
Java COM

RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2001

August 2001 Volume:6 Issue:8

The World’s Leading Java Resource

TM

Feature: Core J2EE Patterns John Crupi
Learning to design comes from experience 16

Enterprise Java: Fitting the Pieces into the Tony Loton

Enterprise Java Puzzle Adding functionality with EJBs PART 3 24

Authorization: J2EE Application Sanjay Mahapatra

Security Model A powerful security model that’s robust and reliable 32

Frameworks: A J2EE Application Steven Randolph

Framework Checklist Building portable, scalable, and robust apps 38

Feature: FavoritesComboBox Justin Hill & David Lesle
Keep each new class simple and flexible 46

Feature: Strategies for Storing Java Objects Scott W. Ambler

in Relational Databases Apply these fundamentals for years to come 62

Industry Commentary:Wireless Apps Wanted Kimberly Martin
A market for third-party J2ME applications is about to explode 84

MIDlets: The Missing Bits Jason Briggs
A beginner’s guide to writing applications for the MID profile PART 2 92

Java Basics: A Deeper Look at Java Jacquie Barker
Anatomy of a Java program, revisited 98

Applet EJB
Servlet

XML

JSP

STRATEGIE
RATEG

TRA GIESTRATEGIE
RATEG

TRA EGIESTRRATEGRA GS

Guest Editorials
by Sanjay Sarathy pg. 7
by Rob MacAulay pg. 76

Book Review
by Ajit Sagar pg. 30

J2ME API Rundown
pg. 78

Product Reviews
Jeode pg. 80
iPAQ pg. 88

Cubist Threads
by Blair Wyman pg. 114

THE LARGEST JAVA EVENT ON THE EAST COAST

AUTHOR BIO
Alan Williamson is editor-in-chief of Java Developer’s Journal. In his spare time he holds the post of chief technical officer at n-ary
(consulting) Ltd, one of the first companies in the UK to specialize in Java at the server side. Reach him at alan@n-ary.com
(www.n-ary.com) and rumor has it he welcomes all suggestions and comments!

5AUGUST 2001

F R O M T H E E D I T O RD IFF

We All Need a Week Off in the Sun

alan@sys-con.com

At last we can return to sanity. The
speeches are over, the bunting is
down, and the mad hysteria is at an

end. After the chaos of JavaOne we can return
to normal. I am of course paraphrasing that
great literary character Edmund Blackadder.
It has now been a month since I arrived home
from our annual pilgrimage to JavaOne and
I’m still following up on all the business cards
that were thrust in my general direction.

JavaOne is a great opportunity to do some
serious catching up and general networking,
and it was a real treat as Blair Wyman and I
took some time out to have a chat with James
Gosling about what he’s been up to lately. You
can read what we spoke of elsewhere in this
issue. It was interesting to talk with James con-
cerning the overall direction of Java and dis-
cover how he feels about many of the issues.
We touched on the old debate regarding Java
being open-sourced and his response was so
wonderfully practical that I can’t help feeling
that maybe he resents all the bickering and
politics that divert attention from the underly-
ing beauty that makes Java, well…Java.

The industry is still struggling to find its feet
after the dot-bomb exploded, and desperately
trying to stave off redundancies is the very com-
pany behind Java: Sun Microsystems. Although
we probably shouldn’t read too much into this
(as Scott McNealy keeps telling us), the core
business at Sun is still manufacturing and sell-
ing hardware, and the work Sun does with Java
is still very much full steam ahead. That said, as
you’ll read from our chat, James does comment
on the fact that “all the cool stuff with Java isn’t
done at Sun,” so even if they are hitting a rocky
patch in the road, Java isn’t going to suffer much.

This was the month that Sun had their
famous one-week nonpaid holiday – a move
to save some pennies, which for an organiza-
tion of Sun’s size and payroll would account
for quite a lot of pennies. But you can’t help
wondering how many of the engineers just
went into work anyway.

Looking up the coast from Sun to another
company’s trials and tribulations, this month
we saw that Microsoft was saved from the
chopping block and has been allowed to stay
together as a single operating unit. I can’t really
comment on whether this is going to be a good
thing or a bad thing, but I’m getting a little para-
noid regarding Microsoft’s influence on the
desktop market now that Windows XP is just
around the corner. For example, have you been
following the SmartTag debate? This is where
Microsoft will put hyperlinks around special
keywords it finds in all rendered HTML pages to
link you to another site with more information.

For example, say your Web page happened to
mention Sun Microsystems somewhere in the
text. A small link made out of the text would – if
you were to position your mouse over a pop-up
– display more information and optionally take
you to another site…all without the approval or
knowledge of the original Web site producer. In
principle it’s a great idea, but one that is open to
so much abuse. The upshot is that Microsoft has
postponed this feature’s appearance in IE for a
little while longer, but rest assured it’ll be there in
some version, at some point.

That aside, what annoys me most about
Microsoft’s newest addition to its operating sys-
tem suite is that there’s still no embedded Java
Virtual Machine. With Microsoft’s strong relation-
ships with the major PC manufacturers, Windows
XP will find its way into the homes of millions of
users who will simply never think of installing a
JVM, let alone replacing the operating system.
Due to the high-level politics and strategies of two
companies, millions of users are affected, includ-
ing a whole development community that won’t
be able to service this new user base.

We need to start moving Java applications
into the mainstream and have sites chockful of
executable JAR files that users simply 6and run
without worrying about the requirements they
face in the README.TXT file beforehand.

Maybe if we had this, Microsoft wouldn’t
seem half so bad.

ALAN WILLIAMSON EDITOR-IN-CHIEF

J2SE
H

om
e

J2E
E

J2M
EI N T E R N A T I O N A L A D V I S O R Y B O A R D

• CALVIN AUSTIN (Lead Software Engineer, J2SE Linux Project, Sun Microsystems),
• JAMES DUNCAN DAVIDSON (JavaServlet API/XMP API, Sun Microsystems),

• JASON HUNTER (Senior Technologist, CollabNet), • JON S. STEVENS (Apache Software
Foundation), • RICK ROSS (President, JavaLobby), • BILLROTH (Group Product
Manager, Sun Microsystems), • BILL WILLETT (CEO, Programmer’s Paradise)

• BLAIR WYMAN (Chief Software Architect IBM Rochester)

E D I T O R I A L
EDITOR-IN-CHIEF: ALAN WILLIAMSON

EDITORIAL DIRECTOR: JEREMY GEELAN
ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI

J2EE EDITOR: AJIT SAGAR
J2ME EDITOR: JASON BRIGGS

PRODUCT REVIEW EDITOR: JIM MILBERY
FOUNDING EDITOR: SEAN RHODY

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN: JIM MORGAN

EXECUTIVE EDITOR: M’LOU PINKHAM
MANAGING EDITOR: CHERYL VAN SISE

EDITOR: NANCY VALENTINE
ASSOCIATE EDITORS: JAMIE MATUSOW

GAIL SCHULTZ
BRENDA GREENE

ASSISTANT EDITOR: LIN GOETZ
TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

W R I T E R S I N T H I S I S S U E
SCOTT AMBLER, BILL BALOGLU, JACQUIE BARKER, JASON BRIGGS, JOHN CRUPI,

JEREMY GEELAN, JUSTIN HILL, TONY LOTON, ROB MACAULAY, SANJAY MAHAPATRA,
KIMBERLY MARTIN, BILLY PALMIERI, STEVEN RANDOLPH, AJIT SAGAR,

SANJAY SARATHY, ANTHONY SIMMONS, ALAN WILLIAMSON, BLAIR WYMAN

S U B S C R I P T I O N S :
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $4.99/ISSUE

DOMESTIC: $69.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

E D I T O R I A L O F F I C E S :
SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645

TELEPHONE: 201 802-3000 FAX: 201 782-9600
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T :
Copyright © 2001 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coor-
dinator. SYS-CON Publications, Inc., reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y :

CURTIS CIRCULATION COMPANY
NEW MILFORD NJ

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

Java COM

7AUGUST 2001

Java COM

WRITTEN BY SANJAY SARATHY

The Ring Is Bloody
With too many solutions looking for a business problem to solve

The Thrilla in Manila: both the name and the
events of that steamy October day in 1975
remain seared in the memory of all who

watched it. Muhammad Ali and Joe Frazier, two of
the greatest boxers in heavyweight history, battled
toe-to-toe for 14 rounds, until Frazier’s corner sur-
rendered and threw in the towel.

Today the technology industry is in the midst
of its own thrilling fight – one that is centered on
the much-hyped world of Web Services. And just
as with Ali and Frazier, the various combatants are
treating each other to verbal jabs and taunts.
Anyone who attended JavaOne this past June wit-
nessed this, particularly at some of the morning
keynotes. Unfortunately, as companies continue
to spar over the issue, we are losing the necessary
focus on the business impact of Web Services as
each vendor beats its own technology drum.

One thing companies don’t seem to be fighting
about is the potential of Web Services to transform
how technology is used to inspire and create new
revenue-generating opportunities for all sorts of
businesses. However Orwellian it might sound,
the idea of creating, assembling, and deploying
personalized services across a global network and
within a contextual framework – all based on who
you are, where you are, and what you’re doing – is
an enormously appealing prospect to many.

The potential to eliminate technolo-
gy and business silos within and
across organizational
boundaries provides
another compelling
argument for Web
Services, especially
when companies real-
ize they won’t have to
abandon the various
investments they’ve
already made.

Companies agree
on something else as
well: no matter what
the technology flavor

of the month might be, all businesses want to cre-
ate tighter synergies throughout their entire value
chain that encompass customers, employees,
suppliers, and partners.

This is truer today than ever. These synergies have
taken on a whole new importance thanks to the
explosion in online personalization; a development
that now touches individual consumers as well as
larger business-to-business operations.

As vendors, we often get so distracted by the
technology details that we end up losing sight of
this bigger picture. Worse yet, perhaps, this too
often makes us adversaries, leading to wasted
time and energy as we throw punches at each
other about which is the best way to proceed. We
have to remind ourselves that organizations cre-
ate real value when they’re able to implement

AUTHOR BIO
Sanjay Sarathy is director of product marketing at iPlanet. He holds a BA in

quantitative economics from Stanford University and an MBA from the Haas School of Business at the University of California.

sarathy@iplanet.com

G U E S T E D I T O R I A L

No Magic. . .
Just Technology That Works

M ▲
G

I
C

✦ ✦ ✦

The rational
alternative

Download fully functional demo at:

www.magicdraw.com
contact us at

contacts@magicdraw.com

100% Pure Java Application

Version 4.5

Introductory Offer
$2995
for Teamwork Server

All 9 UML diagrams
Additional Features:
• Performs Java, C++ or CORBA IDL

code round-trip engineering (code
generation and reverse engineering);
recognizes JavaDoc comments. This
feature allows you to write code, reverse
engineer, make changes to the model
and re-generate the code without losing
any implementation specific information.

• Supports UML 1.3 notation.
• Saves diagrams as bitmap PNG/JPG and

scalable WMF/SVG/EPS/DXF formats.
• Provides XML interoperability — native

model files are stored in XMI format.
• Integrated with Forte for Java (FFJ) IDE

versions 1.0 and 2.0.

Standard Edition: $249
Professional Edition: $499

Visit us at Java One

Floating License . . $100 additional

Upgrade for a $69 annual fee!

L E T T E R S T O T H E E D I T O R

8 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E I’m a subscriber to JDJ and am very happy
with the magazine (I’m from the U.K. liv-
ing and working in Germany). The digital

edition is an excellent bonus for me as the
post takes awhile. The content of the maga-
zine is simply first class, both in quality and
choice of subject matter – I’ll definitely renew
my subscription when the time comes!

Another publication that interests me is
WBT, which I currently read online only. I’d
be interested in receiving subscription
information/pricing for oversea subscrip-
tions for this publication (possibly just the
digital edition).

In the meantime, keep up the excellent
work, and I look forward to reading the next
issue(s)

Ian Harvey
ian.harvey@tui.de

Plaudits for Tony Loton

I’ve been a subscriber of Java Developer’s
Journal for the past two years. I read your
applet-servlet communication article

[“Fitting the Pieces into the Enterprise Java
Jigsaw”, JDJ, Vol. 6, issue 5] and I have a simi-
lar kind of job requirement. I’m following your
example in the article of passing a bean from
the servlet to the applet by trying to pass a
servlet session object to the applet, but it’s not
working. However, when I tried to pass my
bean from the servlet to the applet, it worked.

I know the servlet runs at the server side
and also the session, but the applet runs at
the client. Can we pass the servlet-session
object to the applet ?

I’ve been struggling with this problem for
the past month and my friends couldn’t help
me. I would appreciate it if you could throw
some light on the subject.

Thanks a lot.

Mohan Palaniswamy
mpalaniswamy@ccsin.com

Hi Mohan,
I hope the original article was useful to

you. To answer your question, an object may
be passed from the server to the client only if
it’s serializable, i.e., implements the
java.io.Serializable interface. Any object not
implementing Serializable cannot be passed.

Serialized objects are passed “by value”
across the network so that the receiver sees a
duplicate version of the original rather than
the original. So even if you could pass the
HttpSession, it would no longer reflect the cur-
rent session state as kept current on the server.
Presumably you want the client to see some of
the information held within the session. How
about defining your own object to hold values
extracted from the session, make it
Serializable, and exchange that object instead?

Incidentally, I often see this problem
when someone is trying to pass a JDBC con-
nection from server to client. It would be nice
if you could, but I’m afraid not.

Tony Loton
tony@lotontech.com

The JDJ that you
gave me at the
c o n f e r e n c e

was quite impressive
and very informative.
Up until that time I was
a regular reader of Java World, but after going
through JDJ I think I might change the maga-
zine for my Java requirements.... :)

Ashutosh Bhonsle
bhonsle@hotmail.com

Iwas pleased to see the JNI article in the
June 2001 Java Developer’s Journal since
it dealt with the IBM iSeries (AS/400) plat-

form. As a Java developer using the iSeries it’s
nice to see it get some press. It seems to be a
well-kept secret although it’s a very robust
platform for running Java applications.

I hope to see more articles dealing with
the IBM iSeries platform.

T.Allen
tballen@copart.com

Java COM

<INSERT TECHNOLOGY CHOICE OF THE
MOMENT> and profitably meet their busi-
ness objectives.

This is even more important today given
the current economic environment.
Technology vendors must be able to articu-
late how they enable their customers to gen-
erate maximum return on their critical
assets, which include their people, their
business processes, and their information
systems.

During and since JavaOne, I’ve had the
opportunity to speak with a number of
companies developing interesting tech-
nologies devoted to various aspects of the
Web Service paradigm. I don’t doubt that
some of these ideas will be revolutionary.
I’m confident as well that a few of the peo-
ple involved in these developments will
become wealthy, provided, of course, their
companies get funded. Still, I could not
help but feel overwhelmed by just how
many different types of solutions are look-
ing for a business problem to solve – even
for someone like myself, who is living and
breathing this stuff!

I pity the poor CIO, line-of-business
executive, or even developer, who, having
just figured out how to really take full
advantage of the Java 2 Platform, Enterprise
Edition (J2EE) model, must now wrestle
with this dazzling array of new technolo-
gies.

In the end, a vendor’s credibility is only
partly the result of an innovative technolo-
gy getting shipped to market. After all, who
can’t name a handful of cool companies
that got knocked out before ever delivering
a product? No, a vendor’s credibility is
more a product of their ability to help busi-
nesses understand how to generate top -
and bottomline – benefits from the tech-
nology they’ve chosen. What’s more, this
model is true whether the technology trend
was yesteryear’s client server model (may it
rest in peace) or today’s promising Web
Services.

The Ring
Is Bloody

10 AUGUST 2001

AUTHOR BIO
Ajit Sagar is the J2EE editor of JDJ, and the founding editor and editor-in-chief of XML-Journal. A lead architect with VerticalNet Solutions, based

in San Francisco, he’s well versed in Java,Web, and XML technologies.

ajit@sys-con.com

J2EE Design Patterns:The Next Frontier
We live in a world where

abstraction is the name of the
game. I used to be an avid

reader of Asterix comics, and thinking of
abstraction reminds me of a couple of
panels in the “Obelix & Co.” comic book. A
Roman emissary tries to explain to the
(simpleton) Obelix the intricacies of
Roman economy in simple words: “Make
much menhir, get much gold," or some-
thing to that effect.

I don’t mean to say that we developers
are simpletons. But, as my colleagues in
marketing say, the presentation needs to
be “dumbed-down” for the appropriate
crowd. As an enterprise architect, I don’t
want to deal with the details of system-
level programming and operating system
implementations. That is one of the rea-
sons I chose J2EE as my reference frame-
work for implementing applications. Yes,
J2EE is an abstraction, a “dumbed-down”
framework for me to develop distributed
applications.

One of the really neat things about Java
is that it’s made standard design patterns
household names for the developer com-
munity. Java is built on standard design
patterns and implementation guidelines.
Five years ago, the majority of the pro-
grammers I talked to didn’t know what
design patterns were. Now, almost all Java
developers are aware of Factories,
Listeners, and Adapters. The reason? Core
Java objects use the Factory patterns.
Observer-Observable and Producer-
Listener are a part of the language.
Adapters and Proxies are applied all over
enterprise Java applications.

J2EE Design
J2EE provides component APIs that are

built on solid design principles. However,
in order to apply these APIs to build enter-
prise applications, you need a good design
base for developing robust and reusable
components. The good news is that years

of experience of a multitude of developers
are available for other developers to apply,
use, and learn from. The best approach is
to consult the appropriate documentation
and other resources, and not reinvent the
wheel for each new application. One of the
primary advantages of this approach is
that your design paradigm will be support-
ed by a larger community than just the
environment that you program in. In some
sense, design patterns are simply commu-
nication mechanisms for application
architects, designers, and developers to
share information on best design prac-
tices.

J2EE covers a lot of areas. It’s impossi-
ble for a single person, or a group of devel-
opers, to acquire expertise on all of them.
This problem is magnified in distributed
development environments where com-
municating the different aspects of design
and coordinating the modules of the
application becomes an extremely daunt-
ing task. Design patterns help alleviate a
large portion of this pain.

Sun’s J2EE Blueprints provide a great
starting point to help developers under-
stand the rationale behind the design of
the J2EE platform. The sample Pet Store
application helps put this in the perspec-
tive of a real-world demo. However, when
you design a real-world application, there
are other aspects of design that you need
to address. With the acceptance of J2EE as
the preferred platform for building distrib-
uted applications, you’ll see richer sources
of information on building these applica-
tions emerge.

Starting This Month…
At JDJ, we want to address this higher

level of abstraction. This month and in
subsequent issues, you’ll see more cover-
age on applying J2EE into actual applica-
tions. In this issue, John Crupi starts a

J 2 E E E D I T O R I A LO R
J2

SE
H

om
e

J2
E

E
J2

M
E

J 2 E E I N D E XXX

–continued on page 74

AJIT SAGAR J2EE EDITOR

J2EE Design Patterns: The
Next Frontier

J2EE provides component APIs
that are built on solid design

principles.
by Ajit Sagar

J2EE FAQ

Core J2EE Patterns
Without design patterns,

application development can
be an extremely chaotic task.

Turn the page and see how
design patterns in the realm

of J2EE can help build
robust, reusable applications.

by John Crupi

Fitting the Pieces into the
Enterprise Java Puzzle,

Part 3
The conclusion of a very

exciting tour on designing
enterprise applications using

Java. This article uses
servlets and Session EJBs to

provide the final pieces of the
Enterprise Java puzzle.

by Tony Loton

Book Reviews:
Designing Enterprise

Applications with the Java 2
Platform, Enterprise Edition

& J2EE Technology in Practice
Reviewed by Ajit Sagar

J2EE Application
Security Model

A comprehensive and concise
overview of the J2EE applica-

tion security framework. A
great source for readers who
want an introduction to J2EE

security basics.
by Sanjay Mahapatra

J2EE Application
Framework Checklist

J2EE frameworks enhance
the offerings of application

servers to provide complete
application design

environments.
by Steven Randolph

10

38

32

30

24

12

16

Java COM

J 2 E E F A QQ

12 AUGUST 2001

J 2 E E R O A D M A PPP

Java COM

The Java2 Platform, Enterprise Edition defines the
APIs for building enterprise-level applications.

J2SE.............................v. 1.2

Enterprise JavaBeans API
.....................................v. 1.1

Java Servletsv. 2.2

JavaServer Pages Technology
.....................................v. 1.1

JDBC Standard Extension
.....................................v. 2.0
Java Naming and Directory
Interface APIv. 1.2

RMI/IIOPv. 1.0

Java Transaction API ..v. 1.0

JavaMail APIv. 1.1

Java Messaging Service
.....................................v. 1.0

Useful URLs:
Java 2 Platform Enterprise Edition
http://www.java.sun.com/j2ee/

J2EE Blueprints
http://www.java.sun.com/j2ee/
blueprints

J2EE Technology Center
http://developer.java.sun.com/developer/prod-
ucts/j2ee/

J2EE Tutorial
http://java.sun.com/j2ee/
tutorial/

A
Q

A
Q

A
Q

WHAT ARE THE COMPONENT TECHNOLOGIES OF THE J2EE ARCHITECTURE?
The J2EE architecture consists of the following types of Java components: Web components, EJBs,

application clients, and Java applets. Web components consist of servlets and JavaServer Pages (JSPs).
The component technologies of J2EE facilitate the development of J2EE components.

These technologies are offered as a set of distributed system APIs that are specified by Sun
via the Java Community Process (JCP) and are open to vendors, including Sun, for imple-
mentation. These APIs include :
• Enterprise JavaBean (EJB): For developing server-side business components
• Java Database Connectivity (JDBC): For unified RDBMS access
• Java Message Service (JMS): For distributed messaging
• JavaMail: For e-mail services
• Java Native Directory Interface (JNDI): For distributed naming services
• JavaServer Pages (JSP): For generating dynamic HTML or XML for Web clients
• Java Servlet: For generating dynamic HTML or XML for Web clients
• Java Transaction API (JTA): For managing distributed transactions
• Remote Method Interface (RMI): For distributed object communications

Enterprise JavaBeans are the central theme for J2EE. EJBs comprise Java’s middle-tier serv-
er-side component model. All the other APIs exist to provide connectivity to and from EJBs.

WHERE DO ALL THE J2EE COMPONENTS EXIST IN A DISTRIBUTED APPLICATION?
J2EE is a true n-tier architecture; however, the different components developed on the J2EE

framework can be grouped into server-side and client-side components. Applets and application
clients are basically pure client-side components and execute in a virtual machine on the client
machine. Applets execute in a browser, while applications can execute in other client-side processes.

J2EE offers two types of Web components: servlets and JSPs. The purpose of both types
of components is the same: to serve up dynamic content to Web clients. In fact, JSPs are
compiled into servlets during execution. This means that JSPs and servlets get requests
from Web clients and serve back HTML (or XML). Servlets and JSPs provide the connec-
tivity between the client- and server-side components in a J2EE application. To generate
the right response, they can communicate with back-end data sources through JDBC,
RMI, JMS, or JavaMail, as well as to middle tier Java components, namely, EJBs. In turn,
EJBs can communicate with back-end sources.

EJBs are Java’s server-side components. EJB components are developed to model busi-
ness logic for an application. EJBs can leverage other APIs to connect to and communicate
with back-end systems. There are two types of EJBs – session beans, which are associated
with the lifetime of a user session, and entity beans, which are associated with server-side
business objects that are persisted in a database and live beyond the life of user sessions.

A J2EE component needs an execution environment to run in. J2EE containers are
runtime hosts for J2EE components. Since there are basically two types of middle-tier
J2EE components (Web components and EJBs), there are two types of J2EE containers –
Web component containers and EJB containers.

Web component containers are basically servlet engines, JSP engines, and Web con-
tainers. A servlet container provides network services for servlet execution, such as sup-
port for HTTP, and other request-response protocols. JSP containers are basically servlet
containers with the additional functionality of compiling JSP pages into servlets. As men-
tioned above, JSPs become servlets at runtime. Web containers provide the additional
functionality of access to other J2EE APIs, such as RMI and JDBC.

EJB containers provide the runtime life-cycle management environment for EJB com-
ponents. This includes EJB instantiation, communication, persistence, and transaction
management, as well as access to other J2EE APIs, such as RMI and JDBC.

Application server vendors such as WebSphere, BEA, iPlanet, and ATG provide implemen-
tations of the J2EE service APIs and the containers in which components built on these APIs
can execute. Since there are different types of J2EE containers, there are different J2EE contain-
er providers. This means that you can buy the Web and EJB containers from different sources
and make them communicate by using standard J2EE services. For example, a JRun servlet
engine from Macromedia should be able to work with an EJB container from WebLogic.

J2
SE

H
om

e
J2

E
E

J2
M

E

WHAT ARE J2EE CONTAINERS AND WHAT IS THEIR RELATION TO APPLICATION SERVER VENDORS?

Java COM

16 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

to the first installment of the “Core
J2EE Patterns” column by the Sun Java Center
(www.sun.com/service/sunps/jdc). Every other month, we
(Deepak Alur, Danny Malks, myself, and other architects from
the Sun Java Center) will discuss various topics from our book,
Core J2EE Patterns, Best Practices and Strategies (Alur, Crupi,
Malks, Prentice Hall/Sun Press, 2001). These topics include
each of the 15 J2EE patterns in our catalog, design strategies,
bad practices, refactorings and pattern-driven design in the
Java 2 Platform, Enterprise Edition (J2EE).

Applying the Technology
Today, as in the past, many of us naively assume that learn-

ing a technology is synonymous with learning to design with
the technology. Certainly, learning the technology is impor-
tant for success in designing with the technology. Many exist-
ing Java books are excellent at explaining technology details,
such as API specifics and so forth, but at the same time they
give no insight on applying the technology.

Learning to design comes from experience and from shar-
ing knowledge on best practices and bad practices. The expe-
riences we’ll convey in this column are derived from the work
we have done in the field. We are part of Sun Microsystems,
Inc.’s, Sun Java Center (SJC) consulting organization and have

been designing mission-critical J2EE solutions since J2EE
technology was introduced.

In our work, we often encounter situations where, because
technology is moving so quickly, designers and developers are
still struggling to understand the technology, let alone how to
design with the technology. It’s not good enough to tell design-
ers and developers to write good code, nor is it sufficient to
suggest using servlets and JavaServer Pages (JSP) technology
for developing the presentation tier and EJB components for
developing the business tier.

Since its inception, SJC architects have been working with
clients all over the world to successfully design, architect,
build, and deploy various types of systems based on Java and
J2EE technology and platforms.

Recognizing the need to capture and share proven designs
and architectures, we started to document our work on the
J2EE platform in the form of patterns in 1999. Although we
looked in the existing literature, we couldn’t find a complete
catalog of patterns that dealt specifically with the J2EE plat-
form. We found many books dealing with one or more of the
J2EE technologies, which do an excellent job of explaining the
technology and unraveling the nuances of the specifications,
but many of these books fall short on design.

After two years of work on capturing J2EE patterns and

Java COM

18 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

documenting them in the proper pattern form, at the JavaOne
2001 Conference we launched our book, which includes the
SJC J2EE Pattern Catalog. We also announced that four com-
panies and allies, Rational, TogetherSoft, Forte, and iPlanet,
have all agreed to bundle the SJC J2EE Pattern Catalog in their
respective tools (http://java.sun.com/pr/2001/06/pr010604-
25.html).

This is important in our eyes because patterns lend them-
selves to tools so nicely. As a matter of fact, the pattern-driven
design concept in J2EE technology is difficult without tool
support. More about this later.

The Essence of Patterns
First, let’s start with a brief overview of patterns – starting

with some expert definitions.
In A Pattern Language, Christopher Alexander says each

pattern is a three-part rule which expresses a relation between
a certain context, a problem, and a solution.

Richard Gabriel discusses this definition in more detail in
A Timeless Way of Hacking. Gabriel offers his own version of
Alexander’s definition as applied to software: each pattern is a
three-part rule that expresses a relation between a certain
context, a certain system of forces that occurs repeatedly in
that context, and a certain software configuration that allows
these forces to resolve themselves.

This is a fairly rigorous definition, but there are also much
looser ones. For example, Martin Fowler, in Analysis Patterns,
offers the following definition: a pattern is an idea that has
been useful in one practical context and will probably be use-
ful in others.

As you can see, there are many definitions for a pattern,
but they all have a common theme relating to the recurrence
of a problem/solution pair in a particular context. Some of the
common characteristics of patterns:
• They’re observed through experience
• Are typically written in a structure
• Prevent reinventing the wheel
• Exist at different levels of abstraction
• Undergo continuous improvement
• Are reusable artifacts
• Communicate designs and best practices
• Can be used together to solve a larger problem

Categorizing Patterns
Patterns, then, represent expert solutions to recurring

problems in a context and thus have been captured at many

levels of abstraction and in numerous domains. Numerous
categories have been suggested for classifying software pat-
terns, with some of the most common patterns being:
• Design
• Architectural
• Analysis
• Creational
• Structural
• Behavioral

Even within this brief list of categories, we see numerous
levels of abstraction and orthogonal classification schemes.
Thus, while many taxonomies have been suggested, there is
no one right way to document these ideas.

In our J2EE pattern catalog, each pattern hovers some-
where between a design pattern and an architectural pattern
while the strategies document portions of each pattern are at
a lower level of abstraction. The scheme we have introduced is
to classify each pattern within one of the following three logi-
cal architectural tiers:
• Presentation
• Business
• Integration

Identifying a Pattern
We have successfully completed and deployed many J2EE

technology projects at the Sun Java Center, and over time have
noticed that similar problems recur across these projects. We
have also seen similar solutions emerge for these problems.
While the implementation strategies varied, the overall solu-
tions were quite similar. Let’s discuss, in brief, our pattern
identification process.

When we see a problem and solution recur, we try to iden-
tify and document its characteristics using the pattern tem-

FIGURE 1 J2EE pattern relationships FIGURE 2 Pattern framework

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

20 AUGUST 2001

plate. At first, we consider these initial documents to be can-
didate patterns. However, we don’t add candidate patterns to
the pattern catalog until we are able to observe and document
their usage multiple times on different projects. We also
undertake the process of pattern mining by looking for pat-
terns in implemented solutions.

As part of the pattern validation process, we use the Rule of
Three, as it is known in the pattern community. This rule is a
guide for transitioning a candidate pattern into the pattern
catalog.

According to this rule, a solution remains a candidate
pattern until it has been verified in at least three different
systems. Certainly, there is much room for interpretation
with rules such as this, but they help provide a context for
pattern identification. Often, similar solutions may repre-
sent a single pattern. When deciding how to form the pat-
tern, it’s important to consider how to best communicate
the solution. Sometimes, a separate name improves com-
munication among developers. If so, then consider docu-
menting two similar solutions as two different patterns. On
the other hand, it might be better to communicate the solu-
tion by distilling the similar ideas into a pattern/strategy
combination.

Patterns vs Strategies
When we started documenting the J2EE patterns, we

made the decision to document them at a relatively high level
of abstraction. At the same time, each pattern includes vari-
ous strategies that provide lower-level implementation
details. Through the strategies, each pattern documents a
solution at multiple levels of abstraction. We could have doc-
umented some of these strategies as patterns in their own
right; however, we feel that our current template structure
most clearly communicates the relationship of the strategies
to the higher-level pattern structure in which they are includ-
ed.

While we continue to have lively debates about converting
these strategies to patterns, we have deferred these decisions
for now, believing the current documentation to be clear. We
have noted some of the issues with respect to the relationship
of the strategies to the patterns:
• The patterns exist at a higher level of abstraction than the

strategies.
• The patterns include the most recommended or most com-

mon implementations as strategies.
• Strategies provide an extensibility point for each pattern.
• Developers discover and invent new ways to implement the

patterns, producing new strategies for well-known patterns.
• Strategies promote better communication by providing

names for lower-level aspects of a particular solution.

The Tiered Approach
Since this article describes patterns that help you build

applications that run on the J2EE platform, and since a J2EE
platform (and application) is a multitiered system, we view
the system in terms of tiers. A tier is a logical partition of the
separation of concerns in the system. Each tier is assigned its
unique responsibility in the system. We view each tier as logi-
cally separated from one another. Each tier is loosely coupled
with the adjacent tier. We represent the whole system as a
stack of tiers.

J2EE Patterns
We used the tiered approach to divide the J2EE patterns

according to functionality, and our pattern catalog follows this
approach. The presentation-tier patterns are related to
servlets and JSP technology. The business-tier patterns are
related to the EJB technology. The integration-tier patterns are
related to the Java Message Service (JMS) and Java Database
Connectivity (JDBC) technology.

Table 1, 2, and 3 each list the patterns and a brief descrip-
tion for each tier.

TABLE 3 Integration-tier patterns

TABLE 2 Business-tier patterns

TABLE 1 Presentation-tier patterns

PATTERN NAME SYNOPSIS
Intercepting Filter Facilitates preprocessing and post-processing of a request.
View Helper Provides a centralized controller for managing the handling of a request.
Composite View Creates an aggregate View from atomic subcomponents
Service To Worker Combines a Dispatcher component with the Front Controller and View Helper Patterns.
Dispatcher View Combines a Dispatcher component with the Front Controller and View Helper Patterns, deferring many activities to View processing

PATTERN NAME SYNOPSIS
Business Delegate Decouples presentation and service tiers, and provides

a facade and proxy interface to the services
Session Facade Hides business object complexity; centralizes workflow handling.
Value Object Facilitates data exchange between tiers by reducing network chattiness.
Composite Entity Hides business object complexity; centralizes workflow handling.
Value Object Assembler Assembles a composite value object from multiple data sources.
Value List Handler Manages query execution, results caching, and results processing.
Service Locator Encapsulates complexity of business service lookup and creation; locates business service factories

PATTERN NAME SYNOPSIS
Data Access Object Abstracts data sources; provides transparent access to data.
Service Activator Activator Facilitates asynchronous processing for EJB components

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

22 AUGUST 2001

Using UML
We use UML extensively in the pattern catalog, particular-

ly as follows:
• Class diagrams: We use the class diagrams to show

the structure of the pattern solution and the
structure of the implementation strategies.
This provides the static view of the solution.

• Sequence (or interaction) diagrams: We use
these diagrams to show the interactions
between different participants in a solution
or a strategy. This provides the dynamic view
of the solution.

• Stereotypes: We use stereotypes to indicate dif-
ferent types of objects and roles in the class and
interaction diagrams.

Each pattern in the pattern catalog includes a class dia-
gram that shows the structure of the solution and a sequence
diagram that shows the interactions for the pattern. In addi-
tion, patterns with multiple strategies use class and sequence
diagrams to explain each strategy.

Patterns Need Patterns
About a year ago, Sun ran a Java technology developer

focus group to gather data about tools and patterns. During
the pattern section, the question, “Do you think patterns are
useful?” was posed to the group. Almost unanimously, the
answer was yes. Next, they were asked, “Do you have any
problems with using patterns in development?”

The number one problem identified by the developers was
that they did not have a good handle on how and when to use
patterns together to solve a business problem. I agree. The
value in creating a pattern catalog is not just understanding
the isolated patterns, but in how the patterns work together.
Even more so, what are the patterns that are commonly used
together to solve a common business problem?

We created a pattern relationship guide (also known as a
pattern language) to visually see how the patterns relate to
each other as shown in Figure 1.

In each column we will attept to put each pattern in the con-
text of a business problem and also discuss the patterns that are
commonly used together. We call these pattern frameworks.

In Figure 2, we show an example of a pattern framework. Each
pattern is represented by a UML package that contains the partic-
ipants of each pattern. The diagram identifies the end-to-end
(across each tier) patterns as can be applied to a business problem.

In Upcoming Issues
I wanted to give you a flavor of what’s to come in future

columns. We think this will be a great opportunity and forum
to exchange and share with you our ideas, vision, and experi-
ences with applying J2EE patterns in the real world. If there
are any J2EE pattern topics you want us to address in future
columns, please e-mail us at CoreJ2EEPatterns@sun.com.

AUTHOR BIO
John Crupi is the chief Java architect of the Sun Java Center. He has more than 15 years of
experience in distributed object computing and remains focused on creating reusable,
scalable architectures for J2EE technology. He is coauthor of Core J2EE Patterns (Prentice
Hall/Sun Press, 2001) and is currently concentrating on pattern-driven design in J2EE.

john.crupi@sun.com

Copyright 2001 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo,

Java, Enterprise JavaBeans, EJB, and J2EE, JDBC and JMS are trademarks or registered trade-

marks of Sun Microsystems, Inc., in the United States and other countries. Sun Microsystems, Inc.

may have intellectual property rights relating to implementations of the technology

described in this article, and no license of any kind is given here. Please visit

www.sun.com/software/communitysource/ for licensing information.

The information in this article (the “Information”) is provided “as is,”

for discussion purposes only. All express or implied conditions, representa-

tions, and warranties – including any implied warranty of merchantability, fit-

ness for a particular purpose, or non-infringement – are disclaimed, except to

the extent that such disclaimers are held to be legally invalid. Neither Sun nor

the authors make any representations, warranties, or guaranties as to the quality,

suitability, truth, accuracy, or completeness of any of the information.

Neither Sun nor the authors shall be liable for any damages suffered as a result of using, mod-

ifying, contributing, copying, or distributing the information.

Portions of this

article contain excerpts

with permission from Core J2EE

Patterns, by Deepak Alur, John

Crupi and Dan Malks (ISBN 0-13-

064884-1) Copyright 2001. Sun

Microsystems, Inc.

Next Month
J2EE Panel Discussion
JDJ chairs major app vendors at
JavaOne
by Alan Williamson

Reflecting on Java
Using the Java Reflection classes
by Jose Barrera

Eliminating
Multithreaded Errors
Recognizing and eliminating errors in
Java
by Mark Dykstra

Drag ‘n’ Drop into Java
by Thomas Hammell

Book Review:
Professional JSP Tag
Libraries
Reviewed by James F. McGovern

Java COM

24 AUGUST 2001

Adding functionality with EJBs

Fitting the Pieces into the
Enterprise Java Puzzle

E N T E R P R I S E J A V A

WRITTEN BY
TONY LOTON

The story so far: In Part 1 (JDJ Vol. 6, issue 4), I covered
servlets and gave a practical demonstration of how a basic access
control mechanism for intranet applications could be built using
Servlet Session Tracking and HTTP Authentication. In Part 2 (Vol.
6, issue 5), I introduced a couple of applets into the architecture
and showed how a communication channel could be established
between the applets and servlets that comprised the application.

The next version of my application
will include the ability for an engineer to
transfer tasks to another engineer when
he goes on vacation or when he’s sick.
This added functionality requires a
servlet to present the transfer form and
subsequently to process the form sub-
mission. An Enterprise JavaBean (ses-

sion) will perform the actual transfer
function.

Task Transfer Servlet
Figure 1 shows what the Task

Transfer Form looks like. You can type
the name of a recipient engineer and
submit the form to initiate the transfer.
If the transfer succeeds, the user is pre-
sented with a confirmation page (not
shown).

I will be using a single servlet to sup-
port two functions: presenting the
transfer form, and handling the form
submission. One servlet, two uses, dis-
tinguished by invoking the servlet
through its doGet() or doPost() method.

The initial form presentation is per-
formed by the doGet() method of the
new servlet, which I’ve called
TransferServlet. Listing 1 provides the
code for this method, and for clarity I’ve

delegated the construction of the HTML
form to a separate displayForm() func-
tion to facilitate the representation of
the form in the case of user error. The
first time around, the form is displayed
with a null error message via the call
displayForm(out.user,null).

When the user submits the form, the
submission is handled by the same
servlet’s doPost() method given in
Listing 2. This method first gets hold of
the engineer to which the transfer
should be targeted. If no engineer was
specified, it redisplays the form with an
error message – displayForm(out,user,
“You must specify an engineer”) – other-
wise the transfer goes ahead courtesy of
an Enterprise JavaBean.

Simple EJB Solution
I’ve created the simplest possible

Enterprise JavaBean to perform the
transfer of tasks from one engineer to
another. The TaskManager EJB is refer-
enced by name via JNDI, and its home
interface is obtained. The home inter-
face is used to create an instance of the
bean, and this instance is instructed to
transfer the tasks. I said that this is the
simplest possible EJB, and it is: the
remote interface has only one method –
transferTasks(…).

The EJB implementation in Listing 3
is a minimal session bean with no trans-
actional attributes, and a single method
with a single JDBC statement to manip-
ulate the usertasks database table. I’ve
kept it simple not only for illustration,
but also because it’s often the best
approach. The sole SQL statement suc-

ceeds and is committed – or it fails and
is rolled back. Either way, transactional
integrity is assured.

When presented like this, EJBs look
easy, so to spice things up I’ll suggest
another way of achieving exactly the
same functionality.

The Alternative EJB Solution
This time, I’ll use an entity bean to

represent each individual engineer and
I’ll rework the TaskManager session
bean to coordinate the two entity beans
that represent the two engineers. The
remote interface for an engineer (entity)
bean has the method definitions shown
in Listing 4. For any given engineer you
can count his tasks, get his tasks, delete
them, and assign new ones.

In case you’re wondering, the
sometimesFail parameter on the
assignTasks() method was my way of
testing this. If set to true, this parameter
causes the method to throw an excep-
tion once in a while, which triggers the
entire transfer operation to be rolled
back.

The TaskManager session bean now
has a revised version of the transferTasks
method, given in Listing 5. It looks up
the two entity beans representing the
from- and to- Engineer(s), gets the tasks
of the fromEngineer, deletes them, and
then adds them one-by-one to the
toEngineer.

Adopting this approach introduces
many points at which the transactional
integrity might be compromised. The
deleteTasks call – or any one of the
assignTask calls – might fail, leaving the

FIGURE 1 Task Transfer Form

AUTHOR BIO
Tony Loton works

through his
company,

LOTONtech Limited
(www.lotontech.com),

as an independent
consultant, course

instructor, and
technical author. He

has a degree in
computer science
and management
and has spent 10

years in IT. His last
five years have been

devoted almost
exclusively to Java,
UML, and related

technologies.

J2
SE

H
om

e
J2

E
E

J2
M

E

Part 3 of 3

database in an inconsistent state. Rest
assured that you could make it work by
setting the transactional properties of
the participating session and entity
beans, in which case the EJB container
will call the ejbLoad and ejbStore meth-
ods (assuming bean-managed persist-
ence) on the entity beans at appropriate
times to assure the transactional
integrity.

This leaves us with (at least) two
ways to implement the transferring of
tasks between engineers using
Enterprise JavaBeans; one way being

considerably easier to implement – and
more reliable – and the other showing
the power and complexity of EJBs. In
general, my suggestion would be:
beware the consultant who dives
straight into the second approach with-
out considering the simpler solution,
although, of course, there are times
when only a complex solution will do.

Fitting the Pieces into the Puzzle
Having presented the three major

architectures offered by the J2EE (the
servlet, applet, and EJB) in a way that
hopefully shows that these three
approaches may be complementary
rather than competitive, you might now
have some good ideas about the direc-
tion in which to take your project. But
you might still be a little unsure about
the answer to the essential question:
Which horse for which course?

I can only give an opinion, but the
order in which I have covered these
technologies is no accident. For any
Internet/intranet application, I would,
by default, assume the servlet-only
approach initially as providing the
thinnest possible clients and the lowest
common denominator for compatibility
with client Web browsers.

For very limited client-side valida-
tion and control, I might stick with the
HTML/servlet approach, add some
JavaScript, and stop there. In all other
situations that necessitated highly inter-
active or graphical clients, I would use
applets with the straightforward
applet–servlet communication mecha-
nism based on serialized objects.

In situations that demand true,
stateful, remotely referenced server-
side objects I would consider
Enterprise JavaBeans. I would try to
keep my EJBs as simple as possible, and
that’s where the irony is. The real bene-

fits of the EJB model come through
using the standard services for transac-
tions, security, and so on. So if you’re
not going to use these services – in the
name of keeping it simple – you might
be better off sticking with simple RMI.
In a nutshell, don’t treat EJBs as a half-
hearted solution; either find an easier
method or commit to the EJB approach
with all your heart.

I’ve not yet mentioned CORBA as a
candidate for client/server communica-
tion or even as an alternative to EJBs. In
the time that it took RMI to mature and
EJB to take off, CORBA – in the form of
the Visigenic (Visibroker) or Iona (Orbix)
Java ORB implementations – provided a
solution that was more comprehensive
than RMI and ahead of EJB. Now that
niche has been filled by pure Java tech-
nologies and I see CORBA as being lim-
ited to the one remaining niche for
which it is uniquely suited – legacy inte-
gration.

The Three Approaches
I’ve taken a tour of the three major

architecture styles for application devel-
opment that are available to Enterprise
Java developers – namely servlets,
applets, and EJB – and I’ve presented my
ideas on how applications may be built
comprising all three approaches, with
some interesting diversions into areas
such as access control. I’ve fitted the big
pieces into the puzzle by offering my
advice on which pieces should be insert-
ed first and which later, if at all.

I’ll leave you with one final thought.
There are a few smaller pieces such as
XML and JSP that could be placed into
the gaps between the big ones to com-
plete the final puzzle, as shown in
Figure 2.

E N T E R P R I S E J A V A

FIGURE 2 Java puzzle

Applet EJB
Servlet

XML

JSP

GLOSSARY

API Application Programming Interface
AWT Abstract Windows Toolkit
CGI Common Gateway Interface
CORBA Common Object Request Broker Architecture
EJB Enterprise Java Beans
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
J2EE Java 2 Enterprise Edition
JDBC Java DataBase Connectivity
JNDI Java Naming and Directory Interface
JSP Java Server Pages
RMI Remote Method Invocation
URL Uniform Resource Locator
WAR Web ARchive
XML eXtensible Markup Language

public void doGet(HttpServletRequest req
, HttpServletResponse res) throws IOException
{
// -- get the current http session --
HttpSession session=req.getSession(true);

String user=(String)
session.getAttribute("user");

if (user==null)
{ /* -- write error message -- */ }

else
{
// -- display the transfer form
res.setContentType("text/html");
PrintWriter out = res.getWriter();

displayForm(out,user,null);
}

}

public void doPost(HttpServletRequest req
, HttpServletResponse res) throws IOException

{
// -- get the current http session --
HttpSession session=req.getSession(true);
String user=(String) session.getAttribute("user");

if (user==null)
{ /* -- write error message -- */ }

else
{
// -- handle the transfer form submission --

res.setContentType("text/html");
PrintWriter out = res.getWriter();

String toEngineer=
req.getParameter("toEngineer");

if (toEngineer==null)
{
displayForm(out,user
,"You must specify an engineer");

}
else
{
out.println("<html>");

out.println("<head><title>TransferServlet
</title></head>");

try
{
Context initial = new InitialContext();

TaskManagerHome taskManagerHome =
(TaskManagerHome) PortableRemoteObject

Listing 2: TransferServlet "doPost" Method

Listing 1: TransferServlet "doGet" Method

tony@lotontech.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

26 AUGUST 2001

Java COM

28 AUGUST 2001

.narrow(initial.lookup("TaskManager")
,TaskManagerHome.class);

TaskManager taskManager=
taskManagerHome.create();

taskManager.transferTasks(user,toEngineer);

out.println("Transfer to "+toEngineer
+" succeeded. ");

}
catch (TransferException ex1)
{
out.println("Transfer to "+toEngineer
+" failed with an application error. ");

}
catch (Exception ex2)
{
out.println("Transfer to "+toEngineer
+" failed with a system error. ");

}

out.println("</body>");
out.println("</html>");

}
}

}

public class TaskManagerEJB
implements SessionBean

{
public void ejbCreate() throws CreateException
{}

public void transferTasks(String fromEngineer
, String toEngineer) throws TransferException

{
try
{
InitialContext ic = new InitialContext();

DataSource ds = (DataSource)
ic.lookup("java:comp/env/jdbc/LOTONtech");

Connection con = ds.getConnection();
Statement st=con.createStatement();

st.executeQuery(
"UPDATE usertasks SET username='"+toEngineer
+"' WHERE username='"+fromEngineer+"'");

}
catch (Exception e) { /* handle the error */ }

}

public TaskManagerEJB() {}
public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void setSessionContext(SessionContext sc) {}

}

public interface Engineer extends javax.ejb.EJBObject
{
public int getTaskCount() throws java.rmi.RemoteException;
public String[] getTasks() throws java.rmi.RemoteException;
public void deleteTasks() throws java.rmi.RemoteException;
public void assignTask(String task, boolean sometimesFail)
throws java.rmi.RemoteException;

public String getKey() throws java.rmi.RemoteException;
}

public void transferTasks
(String fromEngineerID, String toEngineerID)
throws java.rmi.RemoteException

{
try
{
EngineerHome engineerHome= (IEngineerHome)
ctx.lookup("EngineerHome");

Engineer fromEngineer=engineerHome
.findByPrimaryKey(fromEngineerID);

Engineer toEngineer=engineerHome
.findByPrimaryKey(toEngineerID);

String[] tasks=fromEngineer
.getTasks();

fromEngineer.deleteTasks();

for (int i=0; i<tasks.length; i++)
{
// Sometimes fail this, to roll back the transaction
toEngineer.assignTask(tasks[i], true);

}
}
catch (Exception e)
{
System.out.println("TaskManager Exception: "+e);

}
}

Listing 5: transferTasks Method with Entity Beans

Listing 4: Engineer Entity Bean

Listing 3: TaskManager Implementation

J2
SE

H
om

e
J2

E
E

J2
M

E

This month I review two books, both of
which are valuable sources for developers
and architects building enterprise applica-
tions using J2EE technologies.

Java COM

30 AUGUST 2001

If you’re familiar with the J2EE Blueprints
from Sun, Designing Enterprise
Applications with the Java2 Platform,

Enterprise Edition is the official “Java Series”
book from Addison-Wesley on them. It’s a
part of the Java Series Enterprise books
from Sun. J2EE Blueprints are still avail-
able for a free download from Sun’s Java
site, but if you like to have the profession-
ally bound book, this is it.

J2EE Blue prints were discussed in pre-
vious issues of JDJ. They tie the compo-
nents of a complex platform with sever-
al aspects of software application devel-
opment into one brief overview. This
book is that excellent overview of the
J2EE platform. I didn’t think it feasible
to cover all major aspects of Enterprise
Java in 341 pages, but the authors have
done a great job in doing just that.

This is a good book for architects
and designers. It introduces all the
major components of J2EE in a nut-
shell. Readers may be familiar with
some of the information, but I haven’t
seen another source where it has been
covered in such a concise fashion. It
introduces the building blocks of J2EE,
applicability of individual compo-
nents in different scenarios, and tiered
application development. The book is
written by a team of authors from Sun,
who have contributed to the develop-
ment or documentation of the J2EE
framework.

The book can be segmented into
four basic sections, which may apply to dif-

ferent audiences, or
make for different

reading sessions. My
recommendation is for
the reader to go through
the whole book. It is not
voluminous and does
not delve into API
details. As mentioned
before, it provides an
overview and guidelines,
not practical application
development examples.

Chapters 1 and 2 con-
sist of an introduction to J2EE
technologies. The compo-
nents of J2EE are described, a
brief overview of the APIs is
given, and the types of services
offered by J2EE are described.
The discussion on the types of J2EE contain-
ers was lucid.

The second part of the book – Chapters 3
to 6 – discusses the basic tiers of applications
that can be built on a J2EE base. I found this
section particularly interesting. The authors
present the business scenarios in which J2EE
can be applied. What I liked most was that dif-
ferent types of applications are addressed, but

there is no attempt to sell a one-shoe-fits-all
concept. The authors make it clear that all
aspects of J2EE do not apply to all applica-
tions. These chapters help the reader decide
what to apply and when.

The next section Chapters 7–9 deals
with specific issues that designers and
architects encounter when building enter-
prise applications. The issues related to
deploying EJBs, transactions, and security
are covered in brief. The last section dis-
cusses the Pet Store application – an exam-
ple application that illustrates the design of
a commerce application using the compo-
nents of J2EE.

I highly recommend this book. It should
be useful to a variety of readers, ranging from
programmers and architects to product man-
agers. However, it is not a book you can pick
up and use as a programming reference.
Rather it’s a book you can use for design
guidelines.

J2EE Technology in Practice is another
book from the Java Series Enterprise Edition
set from Addison-Wesley. I picked the book up
at JavaOne this year. I was happy to see a book
that verifies for the skeptical that J2EE has
taken off in the real world.

You may have mixed emotions. I liked the
book because it met my expectations –
examples of J2EE applications. However, to
others it may seem like a series of white
papers from different J2EE vendors. If you’re
looking for development techniques, pro-
gramming tips, or API details, you won’t find
them here. This is a book of case studies that

validates the J2EE platform.
The book contains examples of

business applications built using
J2EE technologies. Eight leading
J2EE application server vendors
describe specific customer appli-

cations in which they were
able to successfully use J2EE
to deploy applications. The
applications are in various
business domains, includ-
ing catalog sales, a telecom-
munications application,
and a manufacturing appli-
cation. Design criteria, issues
faced, topology design,
transaction management,
and many other aspects of
applying J2EE technologies
are discussed by the vendors.

Design patterns, guidelines, and valuable
advice are offered by folks who have been in
the trenches with the customer.

I recommend this book for readers who
are looking at examples of real-world J2EE
applications. It is not a comprehensive
source, but a good book to help you make a
crucial decision before you start a new project
using J2EE.

REVIEWED BY AJIT SAGAR

ajit@sys-con.com

Designing Enterprise
Applications with the Java 2
Platform, Enterprise Edition
by Nicholas Kassem,
Enterprise Team
Addison-Wesley
ISBN: 0-201-70277-0

J2EE Technology in Practice
Rick Cattell, Jim Inscore,
Enterprise Partners
Addison-Wesley
ISBN: 0-201-74622-0

info

B O O K R E V I E W
J2

SE
H

om
e

J2
E

E
J2

M
E

J2EE
Design and Practice

• • •

Java COM

32 AUGUST 2001

J2EE server products provide deploy-
ment tools that support the declarative
customization of application components
for the operational runtime environment.
An application component provider isn’t
expected to implement security services,
as it’s the responsibility of the J2EE con-
tainer and server. The security functions
provided by the J2EE platform include
authentication, access authorization, and
secure communication with clients.

Authentication
Authentication is the process by

which an entity (such as a user, organi-
zation, or program) proves and estab-
lishes its identity with the system by
supplying authentication data. For users
this typically means a user name and
password. (In general, authentication
data could be comprised of a digital cer-
tificate, or even biometric data such as a
fingerprint, iris, or retina scan.) A princi-
pal is an entity that can be validated by
an authentication mechanism; it’s iden-
tified using a principal name and veri-
fied using authentication data.

Authorization and Access Control
Authorization and access control

mechanisms ensure that only authenti-
cated principals who have the required
permissions to access application com-
ponents are able to do so. In general,
there are two fundamental approaches
to controlling access – capabilities and
permissions. The capabilities-based
approach focuses on what resources a
given user can access. The permissions-
based approach on the other hand
focuses on which users can access a
given resource. The J2EE authorization
model uses role-based permissions. A

role is a logical grouping of users that’s
used to define a logical security view for
the application. Protected application
resources have associated authorization
rules – roles that are allowed to access a
given component are specified in the
application component’s deployment
descriptor. The deployer maps the roles
to actual users using the J2EE server’s
deployment tools. The J2EE server
enforces the prescribed security policies
at runtime and ensures that only those
users who belong to the appropriate role
are able to access the protected compo-
nents’ functionality – while those who
don’t belong are denied access.

J2EE Containers
A container is part of the J2EE server.

It provides deployment and runtime
support for application components
and is responsible for infrastructural
services including security. There are
three types of J2EE containers that are
meant to house different J2EE applica-
tion components:
1. EJB container: Houses EJB compo-

nents
2. Web container: Houses servlets, JSPs,

static HTML, JPEG files, and more
3. J2EE application client container:

Houses J2EE application clients

Each of these containers has its asso-
ciated deployment descriptor.

Obtaining the Initiating Security Context
In the J2EE model, secure applica-

tions require that the client programs be
authenticated. An end user can be
authenticated using either a Web or an
application client. Once the user is
authenticated, an initial security context

is generated and maintained by the J2EE
platform. This security context is the
encapsulation of the identity of the
authenticated user principal.

Web Container’s Support for Authentication
The <auth-method> element in the

Web deployment descriptor is used to
configure the type of authentication
mechanism such as “BASIC”, and “FORM”.

<auth-method>FORM</auth-method>

The deployment tools provided with
the J2EE server product insulate us from
having to manually write the deploy-
ment descriptors; the elements are pro-
vided here for reference. The following
are some of the authentication mecha-
nisms made available by the Web con-
tainer and server.

Basic Authentication
HTTP basic authentication is the

simplest. When a user attempts to
access any protected Web resource, the
Web container checks if the user has
already been authenticated. If the user
hasn’t, the browser’s built-in login
screen is used to solicit the user name
and password from the user so that the
Web server can perform authentication.
If the login fails, the browser’s built-in
screens and messages will be used. The
user name and password are sent using
simple base 64 encoding.

Form-Based Authentication
Form-based authentication is used if

an application-specific login screen is
required, and the browser’s built-in
authentication screen isn’t adequate. The
Web deployment descriptor needs to

J2EE Application Security Model

WRITTEN BY
SANJAY MAHAPATRA

The J2EE platform architecture provides for the secure
deployment of application components. It emphasizes the declar-
ative approach wherein the application components’ security
structure, roles, access control, authentication and authorization
requirements – as well as the other characteristics pertaining to
transactions, persistence, and more – are expressed and managed
outside the application code.

A U T H O R I Z A T I O N

A powerful security model that’s simple, robust, and reliable

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

34 AUGUST 2001

specify the login form page and the error
page to be used with this mechanism.
When the user attempts to access any
protected Web resources, the Web con-
tainer checks if the user has already been
authenticated. If the user hasn’t, the con-
tainer presents the login form as specified
in the deployment descriptor. If authenti-
cation fails, the error page, as specified in
the deployment descriptor, is displayed.

The <form-login-page> and <form-
error-page> elements are respectively
used to specify the location of the login
and error pages that need to be dis-
played. Further, the login page must
contain fields named precisely j_user-
name and j_password to represent the
user name and password, respectively,
as shown in Listing 1.

HTTPS Authentication
HTTPS (HTTP over SSL) authentica-

tion is a strong authentication mechanism.
It requires the user to possess a public key
certificate and is ideal for e-commerce
applications as well as single sign-ons from
within the browser in an enterprise.

Hybrid Authentication
In both the HTTP basic and the

form-based authentication, passwords
aren’t adequately protected for confi-
dentiality. This deficiency can be over-
come by running HTTP basic and HTTP
form-based authentication mechanisms
over SSL. Generally, the use of the CON-
FIDENTIAL flag in the <transport-guar-
antee> element of the Web deployment
descriptor ensures the use of SSL for
data transmission.

<transport-guarantee>CONFIDEN-

TIAL</transport-guarantee>

All J2EE specification–compliant
Web servers support the concept of a
single sign-on so that one login session
can span multiple applications, thus
allowing a user to log in once and access
multiple applications.

J2EE Client Container’s Support for Authentication
A J2EE application client is a Java

application, but differs from a “plain”
Java application client in that it’s a J2EE
component that’s deployed in the J2EE
“client” container. When a J2EE applica-
tion client is run, a login window provid-
ed by the J2EE application server will
pop up and require user name and pass-
word fields to be input. Once the user is
authenticated, the application will be
started. The authenticated user security
context is obtained, maintained, and
propagated by the J2EE platform so that
the client application code doesn’t have

to deal with the login issue. As with
other J2EE components, a J2EE applica-
tion client is created with the J2EE serv-
er’s deployment tools. J2EE application
clients provide a standard and portable
way for authentication, therefore the
J2EE architecture encourages the use of
J2EE application clients rather than
“plain” Java application clients.

Authentication of ‘Plain’ Java Application Clients
A “plain” Java application client is a

nonbrowser based, stand-alone Java appli-
cation. There’s no standard procedure
defined by the EJB 1.1 specification regard-
ing their authentication. However, several
application servers support a procedure

that involves appropriately setting the
environmental property constants,
java.naming.Context.SECURITY_PRINCI-
PAL and java.naming.Context.SECURI-
TY_CREDENTIALS, and creating the initial
context based on the same (see Listing 2).

Security Context and Access Control
Once the J2EE platform performs

authentication and obtains the security
context of an authenticated principal,
it’s maintained in the background.
Whenever an attempt is made to access
a protected application component, the
container uses the roles known to be
associated with the authenticated user
in conjunction with the roles authorized
to access the component, as prescribed
in the deployment descriptor, to either
permit or deny access. For example, the
container will allow the authenticated
user “John Doe,” who belongs to the
“sales representative” role, to access a
protected component with a deploy-
ment descriptor setting that specifies
“sales representative” as one of the roles
authorized to access it.

Web Component Authorization
JSPs, servlets, and HTML pages can be

set up as protected resources using J2EE
server deployment tools. The <security-
constraint> and its subelement <auth-
constraint> are used respectively to asso-
ciate security constraints on Web

resources and indicate the user roles that
should be permitted access to the Web
component. The roles used here should
appear in the <security-role-ref> element.

This security context can also be
propagated from the Web to the EJB
container, which will use it to authorize
access to the EJB components’ methods.

EJB Component Authorization
The EJB container authorizes access

to EJB components based on the caller’s
security context, in conjunction with the
permissions stipulated in the EJB
deployment descriptor(ejb-jar.xml), via
the <method-permission> and <role-
name> elements.

The deployment descriptor setting in
Listing 3 grants permissions to all the
methods (indicated by the “*”) exposed
via the home and remote interfaces to
an authenticated user in the role of “cus-
tomer”.

The deployment descriptor setting
shown in Listing 4 grants specific per-
missions to the placeOrder() method
exposed via the home and remote inter-
faces to an authenticated user in the role
of “customer”.

Propagating the Security Context
When one component calls another,

the J2EE platform architecture provides
for the propagation of the caller security
context across components along a call
chain. The security context can propa-
gate across the various J2EE containers
within the J2EE server. For example, it
can propagate from the JSP component
housed in the Web container to an EJB
component housed in the EJB container.
The J2EE platform’s support for the
propagation of the sensitive security
context information provides reliability
and convenience. It eliminates the need
for the security context information to
be passed around as an additional
parameter in the business methods.

As such, the deployer can configure
the identity selection policy for intercom-
ponent calls so that a specified principal
identity other than the original caller

A U T H O R I Z A T I O N
J2

SE
H

om
e

J2
E

E
J2

M
E

In general, there are two fun-
damental approaches to con-

trolling access –
capabilities and permissions

“
”

identity will be propagated down the call
chain. The proposed EJB 2.0 specification
provides a standard technique for
addressing the issue of identity selection
along a call chain via the <use-caller-
identity> and <run-as-specified-identi-
ty> elements of the deployment descrip-
tor. If <use-caller-identity> is specified
for a component, it results in the propa-
gation of the caller principal along the
call chain. If the <run-as-specified-iden-
tity> element is used to specify a particu-
lar identity, then that specific principal
identity is propagated down the call
chain and all access control is governed
by permissions for the specified identity.

Programmatically Querying the Security
Context Information

The getRemoteUser(), getUser-
Principal(), and isUserInRole() methods
available in the HttpServletRequest inter-
face provide servlets and JSPs with access to
security context information. The
getRemoteUser() method obtains the name
of the authenticated user, while the
getUserPrincipal() returns the principal
object associated with the authenticated
user. These methods may be useful for
recording the user’s access to Web compo-
nents or dynamically generating HTML
content that includes the name of the user.
Similarly, the isUserInRole(String
roleName) queries the underlying security
mechanism of the container to determine if
the authenticated caller belongs to a given
security role. This may be useful for dynam-
ically generating Web content and options
based on the role of the user.

Similarly, the EJBContext provides
EJB components access into the security
context (as well as transaction context).
EJBContext provides two methods that

allow programmatic access to security-
related information, namely get-
CallerPrincipal() and isCallerInRole().
The getCallerPrincipal() allows the EJB
component to obtain the principal
object associated with the caller. This
may be used for info only in conjunction
with declarative management. In a com-
mon scenario, getCallerPrincipal() may
be called from within an entity EJB com-
ponent to facilitate saving the loginID of
the user who caused the insertion of the
row to the database. This can be accom-
plished by using code in the ejbCreate()
method as below:

this.loginID =

theEntityContext.getCallerPrincipal

().getName() ;

String loginID is a container-man-
aged persistent field that represents the
login/user name that caused the inser-
tion of a particular row, and
EntityContext theEntityContext was
obtained using the callback
setEntityContext(). This approach
allows sensitive data for recording pur-
poses to be obtained via the EJBContext.

The method isCallerInRole(String
roleName) allows the bean implementa-
tion to query whether the caller belongs
to a particular named role. Typically this is
used to provide fine-grained control
access and/or programming logic corre-
sponding to that role. When programmat-
ic calls are made to the isCallerInRole()
method, the component provider
declares the logical role names referenced
in the code in the deployment descriptor,
and the deployer is responsible for map-
ping the logical role to an actual security
role. This is achieved via the <security-

role>, <security-role-ref>, and <role-link>
elements of the deployment descriptor.

Future Directions
Currently there’s no standard mecha-

nism for the propagation of the security
context from the J2EE server to the
enterprise information systems (EIS),
such as database, ERP, or mainframe
transaction processing systems. The
J2EE Connector Architecture, which is
expected to be included in the next ver-
sion of the J2EE platform specifications,
addresses the propagation of the securi-
ty context from the application server to
the EIS. The objective is to extend the
end-to-end security model of J2EE
applications to include the EIS tier.

The next release of the J2EE specifica-
tions is expected to include the Java
Authentication and Authorization
Service (JAAS), which implements the
Pluggable Authentication Module (PAM)
framework and endeavors to make the
login services independent of the actual
underlying authentication mechanism,
so that different security and authentica-
tion implementations may be “plugged”
in or out seamlessly.

More than one J2EE server product may
be used in the production environment of a
large enterprise; therefore the passing of the
security context between different J2EE
server products assumes significance.
Currently, the mechanism of passing the
security context tends to be specific to the
particular J2EE server product. In the cur-
rent J2EE specification, the EJB to CORBA
mapping, which addresses the propagation
of the security context over IIOP, is not a
required feature. The next release of the
J2EE platform specification is expected to
make support for the CORBA/IIOP interop-
erability protocols mandatory, thereby facil-
itating the seamless passing of the security
context between components from differ-
ent vendors deployed on J2EE servers.

Conclusion
The J2EE architecture provides a

powerful security model that’s simple
yet robust and reliable. It emphasizes
the flexible and cost-effective declara-
tive approach of managing security via
XML-based deployment descriptors. It
provides for the propagation of the
security context across components
along a call chain. This eliminates the
need for the user information to be
passed around as an additional parame-
ter in the business method calls, thereby
providing reliability and convenience. It
also supports the concept to applica-
tions of single Web sign-on access.

A U T H O R I Z A T I O N

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">

</form>

Properties props = new Properties () ;
props.put (Context.SECURITY_PRINCIPAL, theUserLogin) ;
props.put (Context.SECURITY_CREDENTIALS, thePassword) ;
IntialContext ic = new InitialContext (props) ;

// proceed with lookup using above InitialContext ic ...

<method-permission>
<role-name>customer</role-name>

<method>
<ejb-name>CustomerServicesEJB</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

<method-permission>
<role-name>customer</role-name>
<method>
<ejb-name>CustomerServicesEJB</ejb-name>
<method-name>placeOrder</method-name>
</method>

</method-permission>

Listing 4

Listing 3

Listing 2

Listing 1

AUTHOR BIO
Sanjay Mahapatra works

for Cook Systems
International. He’s been
writing distributed and

object-oriented
applications for more

than five years and is a
Sun-certified Java

developer and Java 2
platform architect.

smahapatra@cooksys.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

36 AUGUST 2001

Java COM

38 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

First, let’s decide on an appropriate
definition of an application framework.

• An application framework: It’s an
implementation of a set of application-
neutral components and services based
on the best design patterns, standards,
and practices available. These compo-
nents and services should cover all
identifiable tiers of the technology they
are addressing. It should encapsulate
many application complexities and
commonalties, as well as encourage
appropriate design and implementa-
tion principles of the consumer.

As it relates to J2EE, there already
exists a set of well-defined design pat-
terns geared toward the technology.
They can be found in the recently pub-
lished book, Core J2EE Patterns. Sun’s
J2EE Blueprints provide best practice
guidelines and architectural recommen-
dations for real-world application sce-
narios. These enable developers to build
portable, scalable, and robust applica-
tions. But remember, a framework must
provide an implementation of the
guidelines and design patterns across all
tiers. Before listing what to look for in
the implementation, it’s important to
look at existing framework references.

Struts
This framework implements the

Model-View-Controller (MVC) pattern to
aid JSP and servlet development efforts.
Regardless how appropriate its implemen-
tation, without components and services

for the other J2EE aspects (EJB, JMS, etc.),
and because it supports the presentation
tier only, Struts is not qualified to be con-
sidered a J2EE application framework.

realMethods Framework
This framework attempts to provide

support for all the major J2EE technolo-
gies, on all tiers. realMethods contends
that its framework is completely design
pattern–based and has been developed
from the ground up for the past 18
months. There is more on this frame-
work later in the article.

J2EE Blueprints and the Pet Store Demo
Sun’s J2EE Blueprints seeks to pro-

vide a set of best practice guidelines for
J2EE application development. The Pet
Store demo represents an application
built using these guidelines. It also
includes potentially reusable vertical
components, such as a shopping cart.
Our definition also rules out the
Blueprints Pet Store demo since it’s an
application with an implementation
based on design patterns, instead of a
core set of reusable classes and services.

What To Look For
There are roughly a half-dozen key

features and characteristics to look for
in a J2EE application framework. But
first, let’s define three things a frame-
work is not:
1. A library of independent Java compo-

nents: Too often, an enterprise consid-
ers itself to have a framework when
what it has is a set of reusable compo-

nents, each not necessarily having any
relationship with the set. This isn’t to
undermine their importance, but such
components are often not required for
the J2EE application being consid-
ered. A framework should provide
reusability for all applications across
the enterprise using the targeted tech-
nology. A calendar component, while
reusable, isn’t required of every J2EE
application.

2. An application: Even the best
designed and written J2EE applica-
tion is not a framework. Sifting
through such an application will
hopefully provide some best practices
toward proper idioms and techniques
of implementation. However, the level
of reusability required of a framework
would be nearly impossible to extract
from the application.

3. Any other framework: This simply
means that you should expect the
framework to be constructed “with
intention” from the ground up. As
software vendors attempt to capitalize
on the need for J2EE frameworks,
understand the origin of the resulting
framework. Be cautious of vendors
porting existing frameworks from one
technology to J2EE. Ultimately, the
best J2EE frameworks will be based on
the best design patterns and guide-
lines related and specific to J2EE.

The Shopping List
Design Patterns Implemented

A framework must have at its core a
set of design patterns. Patterns provide

A J2EE Application Framework Checklist

WRITTEN BY
STEVEN RANDOLPH

In recent months, there have been significant writings and dis-
cussions surrounding J2EE frameworks and the key benefits one
provides. I will not spend time reiterating those here.The bottom
line is most professionals in this space agree on one thing: applica-
tion-level reuse is a good thing and the right J2EE framework can
deliver just that.This article concerns itself with identifying what
specific features to look for in a J2EE application framework.

F R A M E W O R K S

What to look for to build portable, scalable,
and robust applications

Java COM

40 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

solutions for problems typically
encountered in the design and develop-
ment of J2EE applications. It’s important
to remember that these patterns should
be implemented in such a way as to pro-
vide full coverage on all J2EE tiers.

By building your application on top of
such a framework, it should immediate-
ly inherit the important characteristics
intended by the design patterns.

Multiple Tier Support
Any substantial J2EE implementation

will require support on the presentation,
business, and data/service tiers.
1. Presentation tier: Encompasses

JavaServer Pages, servlets, presenta-
tion logic, minimal security, and an
object cache

2. Business tier: Encompasses applica-
tion business objects, session/entity
beans, and JMS technologies

3. Data/service tier: Encompasses data
access considerations as well as asyn-
chronous service definitions and pro-
visions

Extendable
Since a framework is an implementa-

tion, it represents a decision toward
process definition. To be flexible and
useful in as many implementations as
possible, it should provide the applica-
tion designer and developer with
design-time and run-time access to
both involvement and notification of its
execution. This is done by traditional
means, such as interface implementa-
tion and class extension.

Application Server Neutral
A framework should not make a com-

mitment to any one J2EE application
server. None of its core capabilities
should have a dependency on a single
app server. A feature with a dependency
should be peripheral to the essential
offerings of the framework, or encapsu-
lated and implemented in such a way
that the dependency is transparent to
the application.

Configurable
A considerable number of features

and services of a framework should be
modifiable without making changes to
its code. This should happen by means
of property and/or XML files. One way
in which a framework can maintain
application-server neutrality is by allow-
ing property-based configuration. This
should simplify migration from one app
server to another, or allow a heteroge-
neous mix of app servers in a single
application deployment.

Useful But Not Intrusive
There is a fine line between each. A

framework takes a stand with its imple-
mentation, but is it forcing your design
and development to take place in an
unnatural or unacceptable fashion? A
framework is of no use if it causes you to
retrain in ways that are not transferable
to other J2EE efforts (that do not use the
same framework). Again, this is where
design patterns play a part. By having
patterns as the foundation of the frame-
work, you can be assured that the role

you will play in consuming the frame-
work will be consistent and predictable.

Code Generation
Since a framework should be based

on design patterns and provide multi-
tier support, generating much of the
code as it relates to the application and
its integration with the framework
should be expected. In fact, if this code
is not generated, the application runs
the risk of incorrectly interpreting the
intent of the design patterns already
implemented by the framework. This
would defeat the purpose of using a
framework in the first place.

Dependent (Yet Independent) Services
Just because a framework should be a

cohesive implementation of design pat-
terns doesn’t mean the application
needs to be dependent on all available
services. A framework is of the greatest
use when an application is able to pick
and choose those features that are most
important. Loose component coupling
by the framework assists in accomplish-
ing this.

Application Server Vendor Positioning
Vendors are busy keeping in step with

an ever-changing J2EE specification and
JDK. Many have provided vertical com-
ponents and applications that are main-
ly tied to their server offering. Most
either include, or offer at an additional
cost, tools to assist in bean deployment,
O/R mapping, and more. Some include
Struts or the Blueprints Pet Store demo
as part of their download.

But what good are any of these if, fun-
damentally, the first hurdle is under-
standing J2EE itself? And the second
hurdle, an even higher priority, is to
effectively design and implement in
J2EE. Fast-moving technology with an
increasing level of complexity needs to
provide relief in many areas.
Frameworks address this need. To date,
no application server vendor provides a
complete J2EE application framework.

There exists a natural relationship
between app server and framework ven-
dors. Considering the neutrality re-
quirement of a J2EE application frame-
work, it should seamlessly complement
and enhance any app server vendor
offering. A simple comarketing relation-
ship shows that each vendor endorses
and supports the other’s product. A more
“collaborative” relationship is an indica-
tor of a committed, embedded correla-
tion between the two. This type of rela-
tionship should serve notice of both ven-
dors’ commitment to simplifying and
enhancing your J2EE experience.

F R A M E W O R K S

FIGURE 1 The realMethods Framework implementation of a dozen design patterns

Java COM

42 AUGUST 2001

realMethods Framework
All of the necessary design patterns

required of any well-structured J2EE
application are already implemented by
the realMethods Framework. As such,
the framework provides support on all
tiers (Web, business, and data access).
Its main purpose is to provide a cohe-
sive implementation of the best J2EE
design patterns. This framework also
provides a set of solutions to reoccur-
ring complexities and issues found in
most, if not all, J2EE application devel-
opment.

Observe the realMethods Framework
implementation of a dozen design pat-
terns as defined by the book, Core J2EE
Patterns, Best Practices and Design
Strategies.

Unlike single-purpose Java compo-

nents, the realMethods Framework ful-
fills the need for application-level
reusability across the enterprise (see
Figure 1). By furnishing design time,
development time, and runtime sup-
port, it appropriately allows design and
development efforts to be focused on
business-related issues, and not neces-
sarily on application infrastructure.
Much like the Microsoft Foundation
Classes is to the Windows API, the
realMethods Framework is to the J2EE
Application Server: it applies structure,
order, predictability, and simplification
toward building J2EE applications.

Utilization Is an Issue
Acceptance of J2EE is becoming

more widespread, but its utilization
remains an issue. Today it is a known

fact that many J2EE-based applications
remain on the peripherals of the tech-
nology, using EJB and JMS technologies
sparingly, preferring to focus on the
JSP/servlet and JDBC aspects. A frame-
work encourages more thorough con-
sumption of an application server’s
offerings, and ultimately a deeper com-
mitment by the enterprise to J2EE. As
competing technologies attempt to get
the attention of software architects and
developers, J2EE application frame-
works will be an important part of gain-
ing deeper loyalty and dedication to
J2EE.

Resources
1. Struts: http://jakarta.apache.org/

struts/
2. J2EE Blueprints: http://java.sun.com

/j2ee/blueprints/
3. Core J2EE Design Patterns: www.sun.

com/service/sunps/jdc/J2EE
4. realMethods Framework: www.real-

methods.com; www.j2eeframework.
com

5. Alur, D., Crupi, J., and Malks, D.
(2001). Core J2EE Patterns, Best
Practices and Design Strategies.
Prentice Hall .

F R A M E W O R K S
J2

SE
H

om
e

J2
E

E
J2

M
E

A framework is of the greatest
use when an application is able

to pick and choose those
features that are most important

“
”AUTHOR BIO

Steven Randolph is
founder and chief

technology officer for
realMethods, a J2EE

software product
company based in

Bridgewater,
Massachusetts.

Prior to founding
realMethods, he spent

more than 12 years
designing, managing,

and implementing
enterprise software

solutions for Fortune
500 clients as well as

Internet start-ups. steven@realmethods.com

jeremy@sys-con.com

There’s an old joke: “It’s not progress
I’m against, it’s just change that I
loathe!” This isn’t one you hear

told very often in Internet technology cir-
cles!

But Sanjay Sarathy is right. As he says
in his “Guest Editorial” at the front of the
issue, it would be easy to feel sympathy for
the poor CIOs, line-of-business execu-
tives, or even developers, who, every time
they feel they’ve figured out how to take
full advantage of one edition of Java, find
themselves promptly confronted with
another.

But for once, or so it seems to me from
the sidelines anyway, this isn’t a case of
technology being dominated by two types
of people – those who understand what
they do not manage, and those who man-
age what they do not understand…with
Sun Microsystems falling into the second
category. On the contrary, the general con-
sensus among industry executives and
commentators alike seems to be that Sun –
for all its recent headline-making
economies – is truly on to a winner with
J2SE, J2EE, and J2ME.

Nearly everyone I spoke to or inter-
viewed in the last few weeks and months
of conferences and travel – from Mumbai
to Seoul to San Francisco to New York to
Paris to Copenhagen – has emphasized the
self-evident and increasing maturity of the
Java platform. Sun, they clearly feel, has
been an astute and able custodian of its
own technology.

Small Is Big
Everyone has been asking JDJ’s editori-

al board members, ever since JavaOne,
what was truly the biggest news? Well, to
me there’s little doubt that it was also the
smallest news: J2ME – the small-footprint
Java 2 MicroEdition.

According to Sun’s own estimates, there
are already 3 million mobile phones
enabled with J2ME. Nokia’s President,

Pekka Ala-Pietila, traveled all the way from
Tokyo to San Francisco to announce at
JavaOne that Nokia confidently expects
this total to increase to a staggering 50 mil-
lion Java-enabled phones by the end of
2002 and 100 million by the end of 2003.

It’s interesting to note that another
mobile story has been unfolding...involv-
ing not J2ME but J2SE. A new operating
system for information appliances, such
as advanced PDAs, Web tablets, and so-
called "smart phones" has recently been
launched. It’s based not on J2ME at all, but
on plain vanilla Java 2, Standard Edition.

In public beta release for the first time
just last month, this new OS supports the
full J2SE platform. savaJe XE 0.1.1 (to give
it its official name) is the first and only OS
to date that allows information appliances
to run full J2SE applications, but it proba-
bly won’t be the last. Anyone who has used
a Compaq iPAQ handheld device –
reviewed in this issue of JDJ in the J2ME
Section - will tell you: even without going
to Japan, it’s possible to sense that the next
wave of wireless devices is going to embed
Java firmly not just into people’s minds but
also into their handheld devices.

On the other hand, no matter how
bright the future may seem for PDAs and
for wireless Java, recent events with Psion
remind us of the enormous difficulties of
being involved with hardware. As the old
adage goes, “We are all manufacturers.
Making good, making trouble, making
excuses.” Java can help solve all sorts of
technical problems, but those who would
use it to achieve ROI still need to have a
sound business model.

Conference Draws Near
The JDJEdge 2001 Conference & Expo,

the largest Java conference ever held on
the East Coast, is fast approaching.
Opening keynote speakers include the

J 2 S E E D I T O R I A LO RJ

Java COM

44 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

Java Comes of Age

J 2 S E I N D E XXX

AUTHOR BIO
Jeremy Geelan, editorial director of SYS-CON Media, speaks, writes, and broadcasts about the future of Internet technology and about the

business strategies appropriate to the convergence of business, i-tech, and the future.

JEREMY GEELAN J2SE EDITOR

Java Comes of Age
Sun gets a good midterm

report from developers
worldwide

by Jeremy Geelan

FavoritesComboBox: A
Custom Component for

Displaying Recent
Selections

How it works, and the impor-
tance of design patterns.

by Justin Hill and David Lesle

A Chat with
James Gosling

On a sunny Tuesday afternoon
at JavaOne, James Gosling, the

creator and father of Java,
takes time out to chat with
JDJ’s Alan Williamson and

Blair Wyman.

Strategies for Storing
Java Objects in

Relational Databases
Storing your objects in relation-
al databases is a reality for the
vast majority of Java develop-
ers. This article presents some
basic techniques for doing so.

by Scott W. Ambler

44

54

62

46

–continued on page 74

wing is a library of graphical components used by Java front-

end developers to create robust and functional graphi-

cal-user interfaces. Although there are many exciting

topics in Swing, one of its most salient features is its abili-

ty to be customized.

One of the more powerful and customizable widgets in the
Swing library is JComboBox. JComboBox, a combination of a
text field and a list, allows the user to select an item from a
drop-down list that appears at the user’s request.
FavoritesComboBox, our extension to JComboBox, is a practi-
cal and functional component similar to the Fonts drop-down
list in Microsoft Word (see Figure 1).

The concept of FavoritesComboBox is that it provides a
listing of the most recently selected items at the top of the list,
italicizing and separating them with a horizontal line. A
combo box containing a listing of all the countries of the
world is an example of a domain in which Fav-
oritesComboBox would be applicable. More often than not, if
you live in the United States, “United States” is the selected
choice, so why make the user traverse the entire list to find it?
FavoritesComboBox solves this problem by placing “United
States” at the top of the list.

This article closely examines FavoritesComboBox and its
associated classes. In addition to discussing how
FavoritesComboBox works internally, the article introduces
design patterns, their importance, and how we used them in
the design and development of FavoritesComboBox.

FavoritesComboBox
Classes in the Swing package that start with the letter “J”

serve an important purpose – they act as the glue between the
model and the UI-delegate. In addition, JWhatevers perform
“special” operations such as setting up renderers and initializ-

ing listeners. FavoritesComboBox (see Listing 1), a subclass of
JComboBox, is no exception, and along with performing the
default setup specified in the super class, it accomplishes the
following:
• Adds a focus listener
• Creates and sets a custom combo box model
• Creates and sets a custom renderer

Before providing a detailed description of the above-men-
tioned items, we need to clarify some fundamental assump-
tions regarding user interaction with FavoritesComboBox.

One of the more interesting problems we came across
when designing and developing FavoritesComboBox was try-
ing to determine what constituted a selection in the widget.
For example, suppose a user chooses an item from the combo
box, but the focus remains in the widget. Does this constitute
a selection? Furthermore, when a user is keying the up/down
arrows to navigate the combo box’s list, does this mean the
user is making valid selections? We think not. To solve this
problem, FavoritesComboBox assumes a selection has not
been made until the component’s focus is lost. While this
basic assumption may seem vague at this point, the following
sections will make things clearer.

NestedComboBoxModel
A close look at the pop-up list of possible selections in

FavoritesComboBox shows two separate user-selectable lists.
We’ve separated them into distinct ComboBoxModels – one
with recent selections and one with all the valid choices. A
FavoritesComboBoxModel combines these two models into
one for presentation in FavoritesComboBox. The underlying
behavior that supports this combination of models into one is
provided by the base class – NestedComboBoxModel.

We developed NestedComboBoxModel as a generic com-
ponent that takes the contents of any number of individual
ComboBoxModel instances and presents them as a single
concatenated list of items. Support for the basic features of a
ComboBoxModel is inherited from its base class,

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

46 AUGUST 2001

FIGURE 1 A FavoriteComboBox

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

48 AUGUST 2001

AbstractComboBoxModel. This provides the initial required
interfaces and support for registering event listeners and
firing events to them. We had to implement the remaining
methods of the ComboBoxModel interface in order to present
the combination of several submodels as a single list of ele-
ments.

To report the current selection the model must keep track
of the currently selected submodel. If one is defined,
getSelectedItem() delegates the request to the selected sub-
model. For applying new selections the model must search
through all elements to find the submodel that contains the
new selection. Again, the operation is delegated to the sub-
model, and the new submodel is recorded as the currently
selected one – after the previously selected submodel’s select-
ed item is cleared. This ensures that if a submodel is present-
ed in multiple visual components, the selections are consis-
tent.

NestedComboBoxModel, as we’ve shown, is a robust
ComboBoxModel capable of grouping distinct
ComboBoxModels into one entity and is an important part of
the success of FavoritesComboBox.

FavoritesComboBoxModel and FavoritesRecentComboBoxModel
FavoritesComboBoxModel extends NestedCombo-

BoxModel, thus it combines recent selections with possible
selections from two separate ComboBoxModels. One impor-
tant customer requirement of our component was the ability
to share recent lists across similar combo boxes. As a result we
introduced a facility for models containing related items to
share the list of recent selections. This is possible by assigning
a type (of class String) to each instance. Combo boxes that
share the same type will adjust their set of recent selections
when any other combo box of that type changes selection.
Due to the interesting communication interaction between
recent lists, we’ve chosen to delegate this functionality into a
separate model – FavoritesRecentComboBoxModel.

To construct a FavoritesComboBoxModel, a programmer
must pass an existing ComboBoxModel into the constructor.
Internally, the passed-in model will be used to define the
“whole” list. In addition, FavoritesComboBoxModel will cre-
ate another model, FavoritesRecentComboBoxModel, to be
used as the recent list. Finally, both models will be added as
submodels to FavoritesComboBoxModel.

The “shared” recent list behavior is possible because all the
FavoritesRecentComboBoxModels are notified when a
change occurs in a similar combo box. This event notification
is implemented in the FavoritesComboBox component
through the use of the Observer design pattern (described in
detail in the Design Pattern section).

Along with handling shared recent lists,
FavoritesRecentComboBoxModel has several other obliga-
tions. One of the peculiarities of JComboBox is that it has a
getSelectedIndex() method. However, the ComboBoxModel
can’t report the current selection by index, so JComboBox
scans the model to determine the selected position when
showing the pop-up. JComboBox’s implementation means
each value must be unique as determined by equals().
However, this paradigm won’t work for our component
since the same item can exist in both submodels. To over-
come this restriction, all items in Favorites-
RecentComboBoxModel are encapsulated in a wrapper. The
two important methods in our Wrapper class (see Listing 2)
are toString(), which delegates the call to the item wrapped,
and extendedEquals(), which provides a less restrictive
comparison that’s needed during focus-gained and recent-
model update.

While Wrapper solves our selection index and equality
problem, we use another approach to obtain the combo box’s
selected item. We now have a Favorites-
ComboBoxModel that can have selected items that are either
Wrappers or the “actual” objects. However, we want
FavoritesComboBox getSelectedItem() to report the “actual”
object. In the case where the selected item is in the recent list,
we want to return its corresponding “actual” object. To
achieve this behavior, getSelectedItem() delegates the respon-
sibility to the FavoritesRecentComboBoxModel’s
getCurrentSelection(). The getCurrentSelection() method
determines the selected item [via the model’s
getSelectedItem()] and, in the case of a Wrapper, returns the
encapsulated “actual” object; otherwise, it returns the select-
ed item – the “actual” object.

FavoritesListCellRenderer
To display the most recently selected items at the top of

the list, italicized and separated by a horizontal line, we need-
ed to create a custom ListCellRenderer. Our class,
FavoritesListCellRenderer, extends DefaultListCellRenderer
and is capable of determining which items exist in the recent
list as well as where the horizontal divider should be placed.
With most ListCellRenderers the rendering logic is defined in
the getListCellRendererComponent() method; our renderer is
no exception. The following code fragment contains the logic
for altering the item’s font and displaying the underline:

if(anIndex < recentModel.getSize())

label.setFont(this.recentListFont);

if (anIndex >= 0 && anIndex == recentModel.getSize()-

1)

label.setBorder(this.underlineBorder);

As you can see by the code fragment, the font change and
underline placement are contingent on the size of the recent
model.

FavoritesComboBoxFocusAdapter
FavoritesComboBoxFocusAdapter, a subclass of Focus-

Adapter, is added as a focus listener to receive focus events
from the combo box component. Focus events are fired inter-
nally when a component either gains or loses focus.
Selections in FavoritesComboBox are not made until the
component’s focus is lost.

As we alluded to earlier, JComboBox and its associated
default model implementation internally set the current
selection whenever items in the combo box change. One
example of this behavior is that as a user navigates the drop-
down list via the up/down keys, the model changes the cur-
rent selections. Although this selection behavior is acceptable
for JComboBox, it’s not adequate for FavoritesComboBox to
use the same selection paradigm.

To handle the selection properly, we determined that an
item in the combo box is selectable only when the component
loses focus. If we had chosen to follow JComboBox’s selection
paradigm, then in the case of user navigation via the key-
board, we would be populating the recent list whenever the
user pressed the up/down keys – which makes no sense when
you think about it. In our selection paradigm the recent list is
updated only when the combo box component loses focus.
The following sections describe in detail how
FavoritesComboBox handles the two types of focus events –
focus gained as well as focus lost.

51AUGUST 2001

Java COM

public void focusLost(FocusEvent e)
The focusLost() method is defined in FocusListener and is

invoked when a component loses the keyboard focus; in our
case, when the combo box component loses focus. Although
the code contained in focusLost() is minute, it serves a pow-
erful purpose – updating the recent list. The following is
focusLost()’s implementation:

if (!(aFocusEvent.isTemporary())) {

JComboBox source =

(JComboBox)aFocusEvent.getSource();

Object selectedItem = source.getSelectedItem();

if (selectedItem != null)

favoritesModel.getRecentModel().updateRecentModel

(selectedItem);

}

The first line of code simply ensures that the focus has not
been lost temporarily. The isTemporary() method allows an
application programmer to differentiate between a focus shift
between components (returns false) and focus events, which
are triggered via window deactivated, window activated, and
more (returns true). Once we’ve determined the focus lost is
not temporary, we can invoke FavoritesComboBoxModel’s
updateRecentModel() method, passing in the selected item
from the combo box as a parameter. The update-
RecentModel() method simply updates its recent list along
with firing an event that notifies all registered listeners. The
event-firing mechanism (see Design Pattern section) enables
the recent list to be shared for all combo boxes of the same
type.

public void focusGained(FocusEvent e)
The focusGained() method is defined in FocusListener and

is invoked when a component gains focus; once again, in our
case, when the combo box component gains focus. Initially
we decided to use focus events for handling combo box selec-
tion and focusLost() exclusively; as a result, focusGained()
had an empty implementation. However, during initial devel-
opment we discovered a substantial problem and conse-
quently found a useful purpose for focusGained().

The problem we encountered can best be explained
through example. Suppose a combo box exists that contains
a listing of all the universities in North America in alphabeti-
cal order. This combo box would be large and, for argument’s
sake, let’s assume that St. Peter’s College is the current selec-
tion. When the combo box gains focus and the drop-down list
is displayed, the list displays the current selected item (St.
Peter’s College). Unfortunately, in this example our recent
list, residing at the top of the drop-down list, won’t be dis-
played since the visible portion of the list is centered on St.
Peter’s near the bottom. To solve this problem, we took
advantage of focusGained() by simply obtaining the combo
box’s selected item, finding its match in the recent list, and
setting the selected item to the recent list’s corresponding
item, guaranteeing that the recent list will always be visible
when the drop-down list is displayed. As with focusLost(), the
focusGained() implementation is fairly straightforward and
is as follows:

JComboBox source = (JComboBox)aFocusEvent.getSource();

if (source != null)

return;

this.favoritesModel.ensureRecentSelectedOnFocusGained(

source.getSelectedItem());

The ensureRecentSelectedOnFocusGained() method uses
our extended equality check to search the recent list for the
match and, if found, selects it, ensuring recent list visibility.

Design Patterns
Design patterns are reusable solutions to common prob-

lems that arise during software design.
With the publication of Design Patterns in 1995, several of

these solutions were cataloged and named. One of the many ben-
efits of design patterns is that they enable software developers to
abstractly discuss designing and developing software in a com-
mon vernacular. During the design of the FavoritesComboBox
component, we relied on several design patterns to guide the
structure of code and ensure flexibility. One of the more promi-
nent patterns we used, the Observer, played a critical role in
maintaining the recent list in FavoritesRecentComboBoxModel.

In Patterns in Java, Grand says the Observer design pattern
“allows objects to dynamically register dependencies between
objects, so that an object will notify those objects that are
dependent on it when its state changes.”

The roles of the Observer are:
• ObserverIF: This interface defines a method, which is

invoked upon notification. In our component,
FavoritesModelChangeListener plays this role.

• Observer: This class is a concrete implementation of
ObserverIF. Our concrete implementation of
FavoritesModelChangeListener is FavoritesRecent-
ComboBoxModel.

• Observable: This class is responsible for maintaining a list
of registered Observers and delivering notifications.
FavoritesRecentComboBoxModel performs this role.

Our Observer implementation doesn’t include as many
classes as the “classic” Observer pattern. The reason we have
fewer classes is because, for simplicity, we’ve chosen to ignore
the ObservableIF role and have Favorites-
RecentComboBoxModel play the role of both Observer and
Observable. To see how these classes interact along with the
running of our test application, the FavoritesComboBox com-
ponent is available on the JDJ Web site.

When a selection is made in a FavoritesComboBox, it
updates its recent model. In addition, it notifies all registered
FavoritesModelChangeListeners of the event. When each lis-
tener – in this case other FavoritesRecentComboBoxModels –
receives notification, the selected item is inserted into its
recent list, providing us with the desired functionality of
“shared” recent lists. In addition to employing the Observer
design pattern, our component uses the Factory Method (cre-
ating the renderer) and the Adapter (Favorites-
ComboBoxFocusAdapter) design patterns.

Future Enhancements
FavoritesComboBox has been a useful widget in our

library of GUI components. However, as with many compo-
nents in their infancy, there are always features left unimple-
mented. The following two features would prove useful to
FavoritesComboBox:

1. Recent List Persistence
Currently, when an application containing

FavoritesComboBoxes is launched, the recent list is empty;
however, it would be nice if the combo box was populated
with its last known recent items. This could be accomplished
in several ways. One way to persist the recent list, albeit a sim-
plistic approach, would be through the use of Java
Serialization.

J2SE
H

om
e

J2E
E

J2M
E

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

52 AUGUST 2001

2. Compound Renderer Support
To change the font of the recent list and create a visual

cue (the separator) between the recent list and the “whole”
list, a special renderer, FavoritesListCellRenderer, was
implemented. In many cases, a developer will want to use
another renderer with FavoritesComboBox, but will be
unable to since JComboBox supports only one renderer.
For example, suppose a developer created a combo box
containing a list of the universities in the Big Ten confer-
ence. The developer might want to “spice up” the combo
box by providing icons displaying the school’s mascot
and/or colors. If the developer wanted to make this combo
box a FavoritesComboBox, he or she would be unable to
render both the icons and the separator/italics. As a result,
FavoritesListCellRenderer could be altered to take a
ListCellRenderer as one of its constructor parameters.
Furthermore, FavoritesListCellRenderer’s getListCell-
RendererComponent() method would need to contain
additional logic in order to compound the two separate
renderers into one.

Conclusion
FavoritesComboBox and its associated support class-

es demonstrate how a useful component can be created
through extending Swing classes and taking advantage of
the flexibility of JComboBox. In our component each
aspect of our enhancement to the basic Swing function-
ality was assigned to a separate custom class – keeping
each new class simple and flexible.

During design and development we leveraged well-
known design patterns in order to increase the reliability
and maintainability of our custom component. In addi-
tion, new requirements, including persistence and cus-
tom renderers, were discovered during
FavoritesComboBox use in real applications. Although
the design of GUI components can be quite complex,
we’re confident that these, along with other future
enhancements, can be accomplished due to the compo-
nent’s good object-oriented design and use of design pat-
terns.

Acknowledgment
We would like to thank the ASCltd team for their care-

ful review and thoughtful suggestions.

Resources
1. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

(1995). Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley.

2. Grand, M. (1998). Patterns in Java. Vol. 1. Wiley.
3. Eckstein, R., Loy, M., and Wood, D. (1998). Java Swing.

O’Reilly & Associates.

AUTHOR BIOS
Justin Hill, a Sun-certified Java programmer, works for Advanced Systems Consulting, a
Java-centric consulting firm in Chicago. He’s currently working on a Java-based source
control management front-end to be released to the open-source community.

David Lesle, a Sun-certified Java programmer, works for Advanced Systems Consulting.
He’s currently designing and developing “front office” multitier Java applications at a
Chicago-based trading firm.

jhill@chicagojava.com

dlesle@chicagojava.com

package com.chicagojava.awp.client.components.combobox;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

/***
<code>FavoritesComboBox</code> is a combobox widget that visually
displays two separate lists: 1) the entire list of selections and
2) a list of favorite (or more recently selected) choices. This
combobox widget mimics the behavior of the “Font List” combobox in
Microsoft Word.
***/
public class FavoritesComboBox extends JComboBox
{

/***
Constructs the <code>FavoritesComboBox</code> and sets its associ-
ated model. @param aModel the combobox’s model

***/
public FavoritesComboBox(FavoritesComboBoxModel

aModel)
{

super();
setRenderer(createFavoritesComboBoxRenderer());
addFocusListener(

new FavoritesComboBoxFocusAdapter(aModel));
setModel(aModel);

}

/***
Sets the maximum number of items the most recent favorites list
can hold. @param aMaximumNumber the maximum number of items in the
list

***/
public void setMaximumNumberOfFavorites(int

aMaximumNumber)
{

((FavoritesComboBoxModel)
getModel()).setMaximumNumberOfFavorites(
aMaximumNumber);

}

/***
Returns the maximum number of items the most recent favorites list
can hold. @return the maximum number of selections allowed in
recent list

***/
public int getMaximumNumberOfFavorites()
{

return ((FavoritesComboBoxModel)
getModel()).getMaximumNumberOfFavorites();

}

/***
Returns the currently selected item. This method is overridden to
invoke the <code> FavoritesComboBoxModel’s getCurrentSelection()
</code> method. @return the currently selected list object from
the data model

***/
public Object getSelectedItem()
{

return ((FavoritesComboBoxModel)
getModel()).getCurrentSelection();

}

/***
A factory method that creates the default renderer to be used for
the combobox. Subclasses should override this method in order to
provide their own renderer. @return the default list cell renderer

***/
protected ListCellRenderer

createFavoritesComboBoxRenderer()
{

return new FavoritesListCellRenderer();
}

}

//a static inner class found in
//FavoritesRecentComboBoxModel
protected static class Wrapper

implements Serializable
{

private Object wrappee;

public Wrapper(Object aWrappee)
{

this.wrappee = aWrappee;
}

public boolean extendedEquals(Object o)
{

return equals(o)
|| wrappee.equals(o)
|| (o instanceof Wrapper &&
wrappee.equals(((Wrapper)o).wrappee));

}

public String toString()
{

return wrappee.toString();
}

}

Listing 2

Listing 1

O
Java
James Gosling on...

Real-world

On a late
sunny Tuesday

afternoon, James

Gosling, the creator and

father of Java, takes time

out to chat with JDJ’s Alan

Williamson and Blair

Wyman.

Java COM

54 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

<williamson>: How are you finding
JavaOne so far?
<gosling>: There’s an awful lot of energy here
and just seeing what people are up to is a lot of
fun. As we go from year to year, things are mov-
ing at such a quick pace. Seeing how much
stuff is incredibly real these days is quite a rush.

<williamson>: Are you still involved with Java?
<gosling>: It’s my job, every day.

<williamson>: We can’t imagine you sitting
there in front of a compiler; do you?
<gosling>: Actually for the last couple of
months I’ve been tormenting the guy who
owns the compiler source and I’ve been
hacking on it relatively heavily. But I think
someday he will forgive me.

<williamson>: What’s the big surprise this
year when you walk around all the booths
and exhibitors?
<gosling>: The thing that I get the biggest kick
out of is all the stuff that is now in shrink-wrap

There’s now such a high
threshold for a major

announcement
“

”
55AUGUST 2001

Java COM

Java COM

56 AUGUST 2001

boxes. When we did that goofy shopping
videotape, none of those devices were
fakes; none of them were balsa blocks.
They were all prototypes. They were all
shipping in volume shrink-wrap gizmos;
it’s just terribly real. A year or two ago
when we were talking about these
devices, it was of academic interest to
most people there. To the people who
were actually building it, it was very inter-
esting.

Today it’s a completely different game
because anybody here at the forum can
really enjoy the feedback. It’s nice to have
the U.S. headed out of being a third-world
country in terms of its phone system – you
can go to a phone store in San Francisco

and buy a Nextel phone. You can go to the
Motorola Web site and get the developer
kit. There’s a little handshake you have to
do, but it’s relatively minor and you too
can hack your phone set, you too can
build an app that does anything from
video games to enterprise data stuff that
goes end-to-end.

<williamson>: With respect to the whole
spectrum of Java, it’s now covering a
tremendous amount of space there.
Which particular area is now ringing
your bell?
<gosling>: I tend to be a science geek,
and for the longest time I was Mr.
Everything Except Enterprise. All kinds of
things ring my bell in that area. A while
ago I visited the Keck Observatory at the
top of Mauna Kea and saw how Java has
really taken over. The giant telescope
crowd and the tools they’re building are
just incredible.

My first paying job was working for a
group of physicists writing satellite data
acquisition software for the Isis 2 satellite
– that was a real rush. Seeing people
doing this kind of stuff is pretty amazing.

<williamson>: Java is a wonderful lan-
guage; it’s your child, I think people
would agree. I’m just wondering, are
there still any warts on your child that
you’d like to see removed? Are there
any problems in Java that you think
need fixing or changing?
<gosling>: The answer is yes and no. In
some sense people are being very suc-

cessful with it. In another sense, if I had a
clean slate and was doing things different-
ly, there are many things that would come
out differently. I actually have a small Web
site that’s this long laundry list of things
that would be entertaining. It goes from,
yeah that might be worth doing to that’s
truly goofy. A lot of these things are pretty
hard design trade-offs. A lot of engineering
is not a black-and-white choice – this is
the right thing to do and that’s the wrong
thing. It’s similar to Whackamole, a game
you play on the Santa Cruz boardwalk
and various other places. There’s a big
board with a little mechanical mole that
sticks his head out of the ground and you
have a big baseball bat that you whack it
down with, but he pops out somewhere
else.

A lot of program design (and any other
kind of engineering) is like that. For
instance, many things about the basic
notion of a class-based system in which

you have subclassing and inheritance of
implementation have issues. You can get
around some of that with different styles.

Actually Josh Watt came out with this
book called Effective Programming. It
contains information on how to think
about object-oriented programming and
how to avoid some of the pitfalls we’ve
discussed over the years. For example,
one of the solutions that often comes up
is: throw away object-oriented comput-
ing completely and go for something
along the lines of delegation models that
some people have used – it’s similar to
class inheritance but somewhat differ-
ent. It solves some problems, but cre-
ates its own. There are things to be
uneasy about but no clear answers. You
could do all kinds of interesting experi-
mentation.

<wyman>: You spoke of being a science
geek. Do you see Java playing in that
space? Do you see it compete against
FORTRAN, or what was your satellite
acquisition software written in?
<gosling>: PDP8 assembly code.

<wyman>: PDP assembler, wow!
<gosling>: That dates me, right? A PDP8
has less compute power than your aver-
age smartcard.

<wyman>: Is there much PDP8 code in
Java?
<gosling>: There’s some learning from
writing PDP8 code. I had been program-
ming for a number of years before I found
a machine beefy enough to run FOR-
TRAN. By then I was writing CDC6000,
7000 assembly code. The cyber series
and its predecessors were pretty hot. It
was almost like half an MIP.

<wyman>: MIP is meaningless informa-
tion for product salespeople?
<gosling>: Yeah, exactly. ;-)

<wyman>: In the science arena, do you
see the megahertz catching up to make
Java effective in a real-time program-
ming environment?
<gosling>: It’s been effective in real time
for quite a while. Lots of people have been
real-time programming in Java for years.
The issue has never been megahertz and
speed. If you talk to real-time people, they
hardly care about speed; what they care
about is determinism, namely, when it’s

N

If you talk to real-time people, they hardly care

about speed; what they care about is determinism,

namely, when it’s time to adjust the flutter on the

F16 wingtab, I want to do it now please

“
”

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

58 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

N

time to adjust the flutter on the F16
wingtab, I want to do it now please.

<wyman>: So no GC cycle then? ;-)
<gosling>: No, no waiting for the garbage
collector to be done with its business. No
waiting for the paging system. No waiting
for the kernel to context-switch out of the
sendmail daemon. When you’ve got to
pull the cadmium rods out of the reactor
core, you have to do it now.

<williamson>: One thing that we’ve been
speaking to all the vendors about, and
one thing they’ve said is that it’s nice
to see that there are no major new
announcements with respect to Java.
It’s as if Java is maturing to a state
where we’re now actually using it, and
we don’t need to help it any longer. In
that respect it’s cool to see Java now
reaching in. Where do you think Java is
going in the next 12 months?
<gosling>: That comment about no major
announcement feels kind of weird
because when I listen to some of the
things that are going on, maybe one of
them, four or five years ago, would have
counted as a major announcement.
There’s now such a high threshold for a
major announcement.

<williamson>: Seriously impressive type
of situation going on now.
<gosling>: Yeah, it’s like, “Oh gee, Mr.
Nokia, only 100-million cell phones, that’s
boring.” We’ve gotten jaded these days.

<williamson>: Isn’t that a sign of the lan-
guage maturing though?
<gosling>: Well, it’s sort of maturing and
engaging and it’s a community thing.
We’ve been trying to get to the point
where Sun is not the driver of Java, and I
think we’ve been pretty successful at it.
The really cool stuff in Java is not hap-
pening at Sun. We haven’t been slowing
down in what we’re doing; the rest of the
world has been ramping up. Would class,
as a really huge announcement, be like
the uptake in MID-P?

What people are doing with develop-
ment tools, the Java faces thing, there’s a
way to do a UI toolkit that’s supported by
IDE tools, yet projects its UI across the
Web. That sounds to me like a pretty major
announcement, but it’s not us doing it. It’s
not guys with Sun badges doing most of
the design and the work. It’s people from
Borland, WebGain, etc., who are doing it.

<williamson>: How do you feel about the
overall issue that’s often debated in

newsgroups about open sourcing
Java?
<gosling>: If I actually knew what people
meant by open sourcing, I might be able
to answer the question. In a strong sense
it’s been open sourcing from the begin-
ning. We’ve always shipped the source;
anybody who wants it can easily get hold
of it. The thing that blocks the zealots call-
ing it open sourcing is that there’s actual-
ly something that we care about: if some-
body has a Java program, and somebody
else has something that they call a Java
platform, the program ought to run. So we
get uptight about that particular point. On
average, developers actually care about
that, they seem to think that that’s a good
thing. Yet the open-source community pil-
lories us. Our license is identical to any of
the other open-source licenses, but we
have these catches that are mostly about
interoperability.

<williamson>: Another hot question we
get asked is, back in December 1990, it
was released as Java2, but it was actu-
ally 1.2. Now it’s going to 1.3. Where
does this Java2 come into it?

<gosling>: Marketing guys, what can I say!
1.2, 1.3, 1.31, that’s the numbering
scheme in the source-code system; that’s
the numbering scheme that the engineers
actually believe.

<williamson>: Will we ever see it bump
into 2.0?
<gosling>: Beats the crap out of me.

<williamson>: I heard 1.4 is around the
corner at the end of the year. Then I

heard rumors that Tiger 1.5 is now
starting to have some serious develop-
ment.
<gosling>: I’ve been working on the Tiger
complement for several months now.

<williamson>: Anything you can tell us
about that?
<gosling>: Nothing useful. On the piece
I’ve been working on are applications,
other than the compiler, that would like to
use the guts of the compiler. I got into this
because I was building a tool that could
play with the animated graph. I had built
myself yet another Java compiler clone
because I wanted to get at the syntax tree,
but that seemed kind of goofy because
the compiler we had is nicely structured.
All it needed was for its innards to be
exposed as an API. What I’ve been work-
ing on for the last couple of months is
cleaning up the guts of the compiler, so it
could be an accessible API.

<wyman>: You speak of the JavaC com-
piler and expose it at an API level, or is

it too soon to talk about it? Would you
be able to give me the parse tree and
show me the nodes and all the good-
ies?
<gosling>: Yeah, that’s what it does now.
There’s this question of what to do with it.
We got started on it because that compil-
er is officially a Sun product and we need-
ed it. The question is whether to just sail
on doing that or start a JCP group to fig-
ure out what to do. We’ve got a first cut at
an API, but we’ll have to talk to people to

“In a strong sense, it’s been open sourcing

from the beginning. We’ve always shipped

the source; anybody who wants it can

easily get hold of it

”

Java COM

60

J2
SE

H
om

e
J2

E
E

J2
M

E

N

find out what kind of interest there is. For
me, I’m doing it because I needed it,
whether it turns into part of the product is
another question.

<wyman>: Do you see any changes to
the Java Virtual Machine specification
underneath the Java language? To
extend any of the architectural limits
that exist in the byte codes?
<gosling>: There are actually remarkably
few limits. We have this long laundry list of
things that would be cool to do, most at
the language-level. It’s interesting to see
how few of them have any impact on the
virtual machine. The number one and two
language requests have been generics
and assertions and neither of those
require BM changes.

There’s a number of them, one of
which I’m particularly hot on called
immutable objects: a way to declare an
object immutable. It means to declare
that a class is final with all final fields, but
with a twist – the quality operator is
somewhat different. The motivation is
that a sufficiently good optimizing JIT can
optimize away the existence of these
objects. So if you did something, such as
complex numbers in terms of immutable
objects, you could end up with code that
did complex numbers as efficiently as
FORTRAN.

Right now the big blockage in getting
C++ or Java performance up to FOR-
TRAN in a number of these numerical
issues is that there’s a limit as to how far
you can optimize the primitive objects. In
particular, the major block is that they still
have an identity as an object. If you can
get to where the notion of identity disap-
pears so EQ goes away, you have only

equal, and the things can mutate, then
you can do copies arbitrarily, which is the
number one thing you can do to allocate
objects into registers where they aren’t
really objects, just things that live there
momentarily. The things that you can do
are pretty terrific.

<wyman>: Like a new pseudo-primitive.
<gosling>: Yeah, although there have
been about a dozen sketches like that
done, it’s actually possible to properly do it
so it actually doesn’t affect the Java VM
specification at all. I mean that in the
sense of correctness, namely a correct
VM would just ignore it, but then these
immutable objects would be allocated like
regular. However, if you really wanted to
take advantage of this, there’s a huge
amount of work in the optimizer. Then you
could start doing things like 3D graphics at
unbelievable performance because with
things like point beta structures, you could
do some very amusing optimizations with
them.

<wyman>: As a big Mandelbrot set fan, I
would love to see a complex as a pseu-
do-primitive.
<gosling>: You can certainly do complex
numbers now, the issue being that you

can’t get to FORTRAN optimization
level with it. One answer to it is to make
complex be a primitive the way FOR-
TRAN does, but to do something that
has the same optimization opportuni-
ties, that’s general enough, so you can
define complex for use in your
Mandelbrot sets. I can define 3D points
for doing constructive solid geometry

and I get exactly the same kind of rock-
et optimization.

<wyman>: Is the automatic optimization
in JavaC and other compilers? Do you
see the dynamic versus static issue
anymore? There used to be a real issue
doing static analysis of a program
because you always had to worry
about something slipping into the
classpath at runtime. But static analy-
sis is precluded by that dynamic
nature, wouldn’t you say?
<gosling>: You can do static compilers
and get the dynamics right, the problem
is that it’s difficult and the people who
built static compilers were on the lazy
side. The average static compiler was
built by retreading someone’s C compil-
er’s back end and all kinds of funny
things creep in. Dynamic compilers have
gotten a lot better and they’re pretty con-
sistently beating the static compilers;
since they know what your program is
doing and what chip it’s running on, they
can do a lot more interesting things. They
know what’s loaded in, and it’s been
interesting watching the evolution of the
programming style as it constructs large
systems because more and more of what
people do to construct systems is they
don’t build a big monolith; they build a
spine that’s a central place where things
can plug in.

A Web server is a prime example, the
way the Tomcat works with plug-in JSP
pages and servlet pages. EE this and
who knows what else. People roll in their
own APIs all over the place. As a gener-
al technique for building flexible systems
that can dynamically upgrade and all
that kind of stuff, it’s used all over the
place. It’s hard to find a Java program
that doesn’t use dynamic loading. Many
people aren’t even aware when it hap-
pens because with many of the underly-
ing systems doing it, things like localiza-
tion, they’ll dynamically link in stuff,
depending on where you happen to be.
You don’t have something where all the
kanji you type in modules are now
loaded for almost everybody; for the
folks in Japan, it’s right there, so you get
what you need.

<williamson>: Well, James, thank you
for taking the time out to talk with us,
and we look forward to seeing you
again in September at JDJEdge.

AUGUST 2001

There’s a way to do a UI toolkit that’s supported

by IDE tools, yet projects its UI across the Web.

That sounds to me like a pretty major

announcement, but it’s not us doing it

“
”

AMBLER

WRITTEN BY SCOTT W
BY SC

ITTE BY
T W. AM

SCO TO COME

APPLY THESE FUNDAMENTALS FOR YE

NDAMEN

PLY TH
UN

R YEARS TO

ENTA ASE

IN RELATIONAL DATA
TIONA

IN R AT
ATABASE

NAL

STRATEGIES
RATEG

TRA GIESTRATEGIES
RATEG

TRA EGIESTRATEGIES
RATEGRA EGISTRATEGIES
ATE

S RA
ES

TEG
S

FOR STORING JAVA OBJE

RING J

FOR OR
BJECTS

JAV

Java COM

62 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E

This article is modified

from Chapters 7 and 8

of Ambler’s latest book,

The Object Primer 2/e,

www.ambysoft.com/th

eObjectPrimer.html.

ike it or not,
the majority of Java devel-
opers use a relational database (RDB),
such as Oracle, Sybase, or MySQL, to persist their
objects. That’s reality for most people, so let’s deal with it.

What’s the big deal about storing Java objects in relational
databases? Something called the object-relational impedance
mismatch. The object paradigm is based on proven software
engineering principles for building applications out of objects
that have both data and behavior, whereas the relational par-
adigm is based on proven mathematical principles for effi-
ciently storing data.

The impedance mismatch comes into play when you look at
the preferred approach to access: with the object paradigm you
traverse Java objects via their relationships whereas with the
relational paradigm you duplicate data to join the rows in tables.
This fundamental difference results in a nonideal combination
of Java and RDBs, although when have you ever used two differ-
ent technologies together without a few hitches? One of the
secrets of success for mapping Java objects to relational data-
bases is to understand both paradigms – and their differences –
and then make intelligent tradeoffs based on that knowledge.

In this article, I present strategies for storing Java objects in
RDBs. These strategies cover the following topics:
• Use persistent object IDs
• Map an attribute to zero or more columns
• Map a class to zero or more tables
• Map inheritance structures
• Use one data entity for an entire class hierarchy
• Use one data entity per concrete class
• Use one data entity per class
• Implement associations in relational databases
• Encapsulate persistence code

The first thing you need to do is get a handle on the key
strategy for your database, a likely source of contention
between Java developers and database administrators
because objects force you to rethink some of the precepts of
data modeling’s approach to assigning keys.

To store data in an RDB, you need to assign unique identi-
fiers to the data rows representing your object to be able to
identify them. In relational terminology, a unique identifier is
called a key; in object terminology, it is called a persistent object
identifier (POID) or simply an object identifier (OID). POIDs are
often implemented as full-fledged objects in your Java applica-
tions, for example, the EJB specification enforces this concept
in its primary key class for entity beans, and as large integers or
strings in your database tables.

A critical issue that needs to be pointed out is that POIDs
should have absolutely no business meaning whatsoever,
which goes against common data modeling practices. Any
table column with a business meaning can potentially change.
And what’s the one thing we learned as an industry over the
years in the relational world?

It’s a fatal mistake to give your keys meaning. No doubt
about it.

1STRATEGY
Use Persistent Object IDs

L

Java COM

64 AUGUST 2001

If your users decide to change the business meaning (per-
haps they want to add some digits or make a number
alphanumeric), you need to make changes to your database in
every single spot where you use that information. Anything
that is used as a primary key in one table is likely used in other
tables as foreign keys. What should be a simple change
(adding a digit to your customer number), can be a huge
maintenance nightmare. Yuck. In the relational database
world, keys without business meaning are called surrogate
keys.

POIDs allow you to simplify your key strategy within a rela-
tional database. Although POIDs do not completely solve the
navigation/traversal issue between objects, they do make it
easier. You still need to perform table joins (assuming you
don’t intend to traverse, to read in an aggregate of objects such
as an invoice and all of its line items), but at least it’s doable.

Another advantage is that the use of POIDs enables you to
easily automate the maintenance of relationships between
objects. When all of your tables are keyed on the same type of
column(s), in this case POIDs, it becomes straightforward to
write generic code to take advantage of this fact.

A POID should be unique within a class hierarchy, and ide-
ally unique among all objects generated by your organization
(something often called global uniqueness). For example, will
the POID for a customer object be unique only for instances of
customer, to people in general, or to all objects? Given the
POID value 74656, will it be assigned to a student object, a
professor object, and a seminar object? Will it be assigned to a
student but not a professor (because the Student class and the
Professor class are in the same class hierarchy)? Or will it only
be assigned to a student object and that’s it?

The real issue is one of polymorphism: it is probable that a
student object may one day become a professor object, but
likely not a seminar object. To avoid this issue of reassigning
POIDs when an object changes type, you at least want unique-
ness at the class hierarchy level, although uniqueness across
all classes completely avoids this issue. This can be another
point of contention between Java developers and data profes-
sionals – polymorphism is an important concept in the object
world but not the data world.

There are several ways that you can generate values for
POIDS:
1. Use the MAX() function (and add 1) on the POID column.
2. Maintain a separate table for storing the next value of a key.
3. Use Universally Unique Identifiers (UUIDs) from the Open

Software Foundation.
4. Use Globally Unique Identifiers (GUIDs) from Microsoft.
5. Use proprietary database essential generation functions.
6. Use the HIGH/LOW approach. See the article “Enterprise

Ready Object IDs” (www.sdmagazine.com/articles/1999/
9912/9912p/9912p.htm)

An attribute of a class will map to zero or more columns in
a relational database. It’s important to remember that not all
attributes are persistent. For example, an Invoice Java object
may have a grandTotal attribute that is used by its instances
for calculation purposes but is not saved to the database. To
complicate matters, some attributes of an object are objects in
their own right, which in turn need to be mapped to your
database. For example, a course object has an instance of

TextBook as an attribute, which maps to several columns in
the database.

The important thing is that this is a recursive definition. At
some point, the attribute will be mapped to zero or more
columns. It is also possible that several attributes could map
to one single column in a table. For example, a class repre-
senting an American ZIP code may have three numeric attrib-
utes, one representing each of the sections in a full ZIP code,
whereas the ZIP code may be stored as a single column in an
address table.

Classes map to tables, although often not directly. Except
for simple databases, you will never have a one-to-one map-
ping of classes to tables. In the following sections, I discuss
three strategies for implementing inheritance structures to a
relational database and an example where dissimilar classes
map to one table.

The concept of inheritance throws in several interesting
twists when saving Java objects into an RDB. There are three
fundamental solutions for mapping inheritance into a rela-
tional database, and to understand them I discuss the trade-

offs of mapping the class diagram presented in Figure 1. To
keep the issues simple I have not modeled all of the attributes
of the classes, nor have I modeled their full signatures, nor
any of the methods of the classes.

With this approach you map an entire class hierarchy into
one data entity, where all the attributes of all the classes in the
hierarchy are stored. Figure 2 depicts the persistence model
for the class hierarchy of Figure 1 when this approach is taken.
Notice how a personPOID column was introduced for the pri-
mary key of the table – I will use POIDs in all of the solutions
to be consistent and to take the best approach that I know of
for assigning keys to data entities.

The advantages of this approach are that it is simple, that
polymorphism is supported when a person changes roles, and
that ad-hoc reporting is made easy because all of the data you

J2
SE

H
om

e
J2

E
E

J2
M

E

FIGURE 1 Simple class hierarchy FIGURE 2 Persistence model

2STRATEGY
Map an Attribute to Zero or More Columns

3STRATEGY
Map a Class to Zero or More Tables

4STRATEGY
Map Inheritance Structures

4aUse One Data Entity for
an Entire Class Hierarchy

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

66 AUGUST 2001

need about a person is found in one table.
The disadvantages are that every time a new attribute is

added anywhere in the class hierarchy a new attribute needs
to be added to the table. This increases the coupling within
the class hierarchy. If a mistake is made when adding a single
attribute, it could affect all the classes within the hierarchy
and not just the subclasses of whatever class got the new
attribute. It also potentially wastes a lot of space in the data-
base and, in the case of some databases, forces you to rebind
your code (by recompiling it) to the new data schema.

I also needed to add the objectType column to indicate if
the row represents a student, a professor, or another type of
person. This works well when someone has a single role but
quickly breaks down if he or she has multiple roles (i.e., the
person is both a student and an professor).

With this approach, each data entity includes both the
attributes and the inherited attributes of the class that it rep-
resents. Figure 3 depicts the persistence model for the class
hierarchy of Figure 1 when this approach is taken. There are
data entities corresponding to each of the Student and the
Professor classes because they are concrete, but not Person
because it’s abstract (indicated by the fact that its name is
depicted in italics). Each of the data entities was assigned a
primary key, studentPOID and professorPOID, respectively.

The main advantage of this approach is that it is still fairly
easy to do ad-hoc reporting because all of the data you need
about a single class is stored in only one table. There are sev-
eral disadvantages, however.

First, when you modify a class, you need to modify its table
and the table of any of its
subclasses. For example, if
you were to add height and
weight to the Person class,
you would need to add it to
both tables – a lot of work.

Second, whenever an
object changes its role, per-
haps you hire one of our
graduating students to
become a professor, you
need to copy the data into

the appropriate table and assign it a new POID – once again a
lot of work.

Third, it’s difficult to support multiple roles and still main-
tain data integrity. For example, where would you store the
name of someone who is both a student and a professor?

With this approach, you create one table per class, the
attributes of which are the POID and the attributes that are
specific to that class. Figure 4 depicts the persistence model
for the data model for Figure 1 when this approach is taken.
Notice how personPOID is used as the primary key for all
three data entities. An interesting feature of Figure 4 is that the
personPOID column in both Professor and Student is
assigned two tagged values, one indicating that it forms both
the primary and foreign keys for those tables.

The main advantage of this approach is that it conforms
well to object-oriented concepts. It supports polymorphism
because you have records in the appropriate tables for each
role that an object might have. It’s also easy to modify super-

classes and add new subclasses as you merely need to modi-
fy/add one table.

There are several disadvantages to this approach. First,
there are many tables in the database, one for every class (plus
tables to maintain relationships). Second, it takes longer to
read and write data using this technique because you need to
access multiple tables. This problem can be alleviated if you
organize your database intelligently by putting each table
within a class hierarchy on different physical drive volumes.
Third, ad-hoc reporting on your database is difficult, unless
you add views to simulate the desired tables.

Relationships in relational databases are maintained
through the use of foreign keys. A foreign key is a data attrib-
ute(s) that appears in one table that may be part of – or is coin-
cidental – with the key of another table. Foreign keys allow you
to relate a row in one table with a row in another. To imple-
ment one-to-one and one-to-many relationships you merely
have to include the key of one table in the other table.

In Figure 5 you see four tables, their keys (POIDs of
course), and the foreign keys used to implement the relation-
ships between them. First, there is a one-to-one association
between the Position and Employee data entities. A one-to-
one association is one in which the maximums of each of its
multiplicities are one.

To implement this relationship I used the attribute
positionPOID, the key of the Position data entity, in the
Employee data entity. I was forced to do it this way because

FIGURE 4 Mapping each class to its own data entity

FIGURE 5 A persistence model for a simple human resources database

4bUse One Data Entity
per Concrete Class

4cUse One Data Entity
per Class

FIGURE 3 Mapping each concrete class to a single data entity

5STRATEGY
Implement Associations in Relational Databases

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

68 AUGUST 2001

the association is unidirectional – employee rows know about
their position rows but not the other way around. Had this
been a bidirectional association, I would have needed to add
a foreign key called employeePOID in Position as well.

Second, I implemented the many-to-one association (also
referred to as a one-to-many association) between Employee
and Task using the same sort of approach, the only difference
being that I had to put the foreign key in Task because it was
on the many side of the relationship.

The PositionBenefit table is interesting because it is an
associative table, one that implements a many-to-many asso-
ciation between the Position and Benefit tables. Unlike Java,
relational databases cannot natively implement many-to-
many associations. Instead they need to be resolved with an
associative table that implements the many-to-many as two
one-to-many associations.

There are several ways you implement the persistence
code within your software. The most common, and least
palatable in my opinion, is to embed SQL statements in your
classes. Listing 1 shows an example of how to persist the Order
class; similar code would be needed to persist an instance of
OrderItem, code that frankly isn’t bulletproof. (I’ll leave that as
an exercise for you, please don’t e-mail me.)

The advantage of this approach is that it allows you to
write code quickly and is a viable approach for small applica-
tions and/or prototypes. There are two main disadvantages.
First, it directly couples your business classes with the schema

of your relational database, implying that a simple change
(such as renaming a column or porting to another database)
results in a rework of your source code. Second, it forces you
to write significant amounts of SQL code, at least four state-
ments for simple CRUD (create, retrieve, update, and delete)
operations let alone the additional code required to support
finding multiple instances based on defined criteria.

A slightly better approach is when the SQL statements for
your business classes are encapsulated in one or more data
classes. Listing 2 shows how this code would be invoked from
the Order class (the code for the OrderData class would be
similar to that in Listing 1). As you can see, there is signifi-
cantly less code in the business objects, although you would
still have the data classes to develop and maintain. Once
again, this approach is suitable for prototypes and small sys-
tems of less than 40 to 50 business classes, but it still results in
a recompilation (of your data classes) when simple changes to
the database are made.

Your data classes are typically implemented as normal
Java classes with embedded SQL, one data class for each
business class (e.g., Employee has a corresponding
EmployeeData class) or as a collection of stored procedures

in your database (one or more for retrieving, one or more for
deleting, and so on). The best thing that can be said about
this approach is that you have at least encapsulated the
source code that handles the hard-coded interactions in one
place – the data classes.

A third approach is to use a persistence framework (Table
1 lists several for Java) that persist objects in RDBs in such a
manner that simple changes to the relational schema often do
not affect your object-oriented code. They do this by storing
your mapping information in metadata, and then using that
metadata to generate the source code needed to persist your
Java objects. When your object or data schema changes you
merely need to update your metadata instead of your source
code.

The advantage of this approach is that only the person
maintaining the metadata needs to understand the two
schemas; your application programmers don’t and, in fact,
they don’t even need to know that their objects are being
stored in an RDB.

The main disadvantage is the misconceptions regarding
performance that many Java developers have with respect to
persistence frameworks, assuming they can achieve the best
performance in their code by hardcoding SQL statements into
it. This may be true if they happen to be experts at writing
high-performance database access code, but this is seldom
the case.

Yes, in theory, persistence frameworks add a bit of over-
head to your Java code when compared to exceptionally well-
written code. However, the reality is that the people who
build persistence frameworks specialize in high-performance
database access – they know a lot of tricks that you don’t. My
suggestion is to approach persistence frameworks with an
open mind and to try them out. When you do so, I suspect
you’ll be pleasantly surprised at how well they actually work –
as well as at the significant time and cost savings that they
provide.

Java and Relational Databases Are Here to Stay
Storing your objects in relational databases is a reality for

the vast majority of Java developers. In this article I presented
some basic techniques for doing so, scratching the surface of
this complex topic. The strategies I presented have been
proven in practice, in fact they are fundamental strategies that
you’ll be able to apply for years to come regardless of the lan-
guage you are working with.

I’ve personally used them on C++, Smalltalk, and Java proj-
ects. If you are interested in this topic, I highly suggest read-
ing my new book The Object Primer 2/e, in which I show how
to build business applications from end to end. This is done

6STRATEGY
Encapsulate Persistence Code

TABLE 1 Java persistence frameworks

Castor http://castor.exolab.org
CocoBase, Thought Inc. www.thoughtinc.com
JdbStore, LPC www.ilap.com/lpc/html/jdbstore.html
ObjectSpark www.objectspark.com
Osage http://osage.sourceforge.net
Toplink, WebGain Inc. www.webgain.com/products/toplink/

RELATIONAL TERMINOLOGY

Column: The relational database equivalent of an attribute of a data enti-
ty stored in a relational table.
Row: The relational database equivalent of an instance of a data entity
stored in a relational table. Also called a record or tuple.
Key: One or more columns in a relational data table that when combined
form a unique identifier for each record in the table.
Composite key: A key consisting of two or more columns.
Surrogate key: A key without a business meaning.
Persistent object identifier (POID): A unique identifier assigned to
objects, typically a large integer number. POIDs are the object-oriented
equivalent of keys in the relational world.
SQL statement: A piece of SQL code used to retrieve, update, insert, or
delete data or manipulate the schema of a relational database.
SQL: Structured Query Language.

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

70 AUGUST 2001

from the point of view of a developer, starting with require-
ments and then moving through analysis to design and finally
into implementation using Java and relational databases on
the back end.

Recommended Reading
1. Ambler, S.W. Building Object Applications That Work: Your

Step-by-Step (1998). Handbook for Developing Robust
Systems with Object Technology. SIGS Books/Cambridge
University Press. www.ambysoft.com/buildingObject-
Applications.html

2. Ambler, S.W. “Enterprise Ready Object IDs.” (1999).
www.sdmagazine.com/articles/1999/9912/9912p/9912p
.htm

3. Ambler, S.W. (2001). The Object Primer 2nd Edition: The
Application Developer’s Guide to Object Orientation. New
York: Cambridge University Press. www.ambysoft.
com/theObjectPrimer.html.

4. Szyperski C. C (1998). Component Software: Beyond Object-
Oriented Programming. New York: ACM Press.

5. UUID Class Javadoc. http://jigsaw.w3.org/Doc/Pro-
grammer/api/org/w3c/util/UUID.html

6. Vermeulen, A., Ambler, S.W., Bumgardner, G., Metz, E.,
Misfeldt, T., Shur, J., & Thompson, P. (2000). The Elements of
Java Style. New York: Cambridge University Press.
www.ambysoft.com/elementsJavaStyle.html

ABOUT THE AUTHOR
Scott W. Ambler is the president of Ronin International (www.ronin-intl.com) and thought
leader of the Agile Modeling (AM) methodology (www.agilemodeling.com). He is the author
of The Object Primer 2/e and co-author of The Elements of Java Style, both from Cambridge
University Press. He is also author of the forthcoming Agile Modeling and co-author of the
forthcoming Mastering EJB 2/e, both from John Wiley & Sons. In his spare time, Scott studies
Goju karate, Kobudo karate, and Tai Chi.

/**
* Save an order and its aggregate order Items
*/

private void save(Connection connection) throws SQLException {

PreparedStatement orderStatement = null;
PreparedStatement orderItemStatement = null;
Vector items;

// Build statements to either insert or update
if (isPersistent()) {

orderStatement = connection.prepareStatement(
"Update INTO Order VALUES(?,?,?,?,?,?,?)");

orderItemStatement =
connection.prepareStatement(OrderItem.getUpdateSQL());

} else {
orderStatement = connection.prepareStatement(

"INSERT INTO Order VALUES(?,?,?,?,?,?,?)");
orderItemStatement =

connection.prepareStatement(OrderItem.getInsertSQL());
}

// Add the order information from this object
orderStatement.setInt(1, getOrderID());
orderStatement.setInt(2, getCustomerNumber());
orderStatement.setDate(3, getOrderDate());
orderStatement.setDouble(4, getFederalTax().getNumber());
orderStatement.setDouble(5, getStateTax().getNumber());
orderStatement.setDouble(6, getLocalTax().getNumber());
orderStatement.setDouble(7, getSubtotal().getNumber());

// Save the order and order contact information
orderStatement.executeUpdate();
orderStatement.close();

// Save the order items
items = getOrderItems();
for (int i = 1; i <= items.size(); i++) {

OrderItem item = (OrderItem) items.elementAt(i);
item.save(orderItemStatement, getOrderID(), i);

}
orderItemStatement.close();

}
/**
* Refreshes this object with the data for
* the order with the given id.
*/

public void retrieve(Connection connection)
throws SQLException

{
OrderContact ship, bill;
int shipToID, billToID;

// Retrieve the record from the Order table

PreparedStatement statement =
connection.prepareStatement("SELECT * FROM Order WHERE

OrderID = ?");
statement.setInt(getOrderID());
ResultSet rs = statement.executeUpdate();
rs.next();

setCustomerNumber(rs.getInt(2));
setOrderDate(rs.getDate(3));

setFederalTax(rs.getDouble(4));
setStateTax(rs.getDouble(5));
setLocalTax(rs.getDouble(6));
setSubtotal(rs.getDouble(7));
setIsPersistent(true);

// Read the records from the OrderItem table
try {

Vector items = OrderItem.retrieveOrderItems(orderID);
setOrderItems(items);

} catch (Exception ex) {
// Handle the exception appropriately...

}
}

/**
* Delete the order and Its order Items
*/

private void delete(Connection connection)
throws SQLException {

PreparedStatement ps = null;
Vector items;

ps = connection.prepareStatement("DELETE Order WHERE OrderID =
?");

ps.setInt(1, getOrderID());
ps.executeUpdate();
ps.close();

// Add deletion of the order items to the transaction
items = getOrderItems();

for (int i = 1; i <= items.size(); i++) {
OrderItem item = (OrderItem) items.elementAt(i);
ps = item.delete(connection);
ps.executeUpdate();

}
}

/**
* Save an order and its aggregate order Items
*/

private void save(Connection connection) throws SQLException {
OrderData.save(this, connection);

}

/**
* Refreshes this object with the data for
* the order with the given id.
*/

public void retrieve(Connection connection)
throws SQLException

{
OrderData.retrieve(this, connection);

}

/**
* Delete the order Its order Items
*/

private void delete(Connection connection)
throws SQLException {

OrderData.delete(this, connection);
}

Listing 2: Delegating Persistence of Order to OrderData

Listing 1: Embedded SQL Code in the Order Class

scott.ambler@ronin-intl.com

Java COM

72 AUGUST 2001

AUTHOR BIO
Jason Briggs works as a Java analyst programmer in London. He’s been officially

developing in Java for three-and-a-half years – unofficially for over four.

jasonbriggs@sys-con.com

If you’ve ever spent time in the Middle
East, you’ll know that bargaining is a
way of life. You haggle over everything,

especially if you’re a tourist – they automat-
ically triple and quadruple the price if
you’re a foreigner. So it doesn’t seem that
unusual to be arguing over the price of a
bus fare to the center of Turkey – a reduc-
tion, when converted to sterling, works out
to around 50 pence. So, in the flush of pride
at finally having outwitted the locals and
arguing the price down to an “acceptable”
amount (which is still probably 2 quid
more than the locals pay), you should not,
on the face of it, be that surprised when the
coach pulls up on the outskirts of some
unknown city, depositing you, your back-
pack, and some equally bewildered Turks
unceremoniously on the side of the road at
4 in the morning.

Looking back, I’ve come up with the
perfect J2ME application for situations
such as those – an instant travel guide: part
phrase book, part translation guide, and
part GPS-based map system. Ignore for a
moment the small difficulties such as the
fact that very few phones and even fewer
PDAs (if any) have GPS facilities built in,
and it does seem like an incredibly useful
tool. At the time I’m sure I would’ve been
quite happy to pay an extortionate U.S.$20
membership fee and three months’ sub-
scription in advance, just for the peace of
mind of knowing exactly where on earth I
was and a few useful phrases to converse
in with my fellow travelers, also stranded
on the roadside. Again, even before starting
to travel, I might have been interested in a
more reasonably priced subscription for
three or four months, or perhaps a year.

I’m sure someone out there is going to
argue that WAP is a likely enough candidate
for this application; however, I’m equally
sure that a Java version is a better idea.
Designed well, it would present a slicker
interface – relatively consistent, no matter
what the platform. With a slightly heavier

interface, the map rendering could be done
on the client side, reducing the probable
network traffic required.

What this example hopefully illustrates
is that there are real-world applications in
which J2ME just fits. Part 2 of the beginner’s
guide to MIDP, found in this issue, will
demonstrate one such application, simpli-
fied greatly by the use of Java. You’ll also
find a review of one of the ever-growing
number of devices that could run this sort
of app: the Compaq iPAQ. For good luck,
we also review one of an also-increasing
number of J2ME virtual machines:
Insignia’s Jeode.

As expected, there were a number of
important announcements at JavaOne cov-
ering a bewildering range of products and
APIs. In some ways I’m glad I wasn’t there,
so Alan (our E-I-C) has to summarize it all
for me. That’s what I keep telling myself in
those moments when my skin turns that
delicate shade of green. Must be something
to do with my diet.

A couple of the more surprising pieces
of news: Sony announced the integration
of Java into the PlayStation 2 console, and
Sun proclaimed a new J2ME Games Profile.
Java is definitely underrepresented in the
console market with only Sega’s ill-fated
Dreamcast supporting a version of
PersonalJava so far. At this point it seems
likely that one will have an impact on the
other, since Sony is involved in the Games
Profile specification, but what it will mean
for you and me, as developers, is not yet
clear. Stay tuned.

By the way, while standing on the side of
a Turkish road in the middle of the night,
without a clue what to do, a cab will gener-
ally come hurtling out of nowhere, the driv-
er pretending he hasn’t seen you, and still
somehow manage to stop right next to you
by applying the brakes at the last possible
instant. He will, of course, also speak
English. It’s one of those unfathomable,
natural laws.

J 2 M E E D I T O R I A LO R
H

om
e

J2
E

E
J2

SE
J2

M
E

Out of Nowhere

J 2 M E I N D E XXX

JASON BRIGGS J2ME EDITOR

Out of Nowhere
There are real-world applica-
tions in which J2ME just fits.

by Jason Briggs

J2ME FAQ

Fiat Lux
Now that we have J2ME and,
in particular, Java processors,

Java in embedded systems will
really take off.

by Rob MacAulay

The Great J2ME
API Rundown

Jeode by Insignia
Solutions

What can you expect from
Insignia's PersonalJava-com-

patible virtual machine?
Find out here.

by Anthony Simmons

Wireless Apps Wanted:
Developers Only

Need Apply
Kimberly Martin, from ATG,

gives her take on the world of
J2ME and application

provisioning.
by Kimberly Martin

iPAQ by Compaq
Computer Corporation

The first in a series of reviews
of J2ME-capable devices.

Caffeine in your hand!
by Anthony Simmons

The Missing Bits
Why Record Management has
nothing to do with organizing

your music collection, and why
networking is more than mak-

ing friends and
influencing people...

by Jason Briggs

72

88

92

78

80

84

76

74

Java COM

J 2 M E F A QQ

74 AUGUST 2001

H
om

e
J2

E
E

J2
SE

J2
M

E

bimonthly column based on his popular
book Core J2EE Patterns. There is a J2EE
Patterns community out there. Feel free to
write to us to find out how you can learn
more about J2EE Patterns. Among other
excellent articles, we also have a piece on
J2EE frameworks by Steven Randolf that
should help you design better applica-
tions by reusing J2EE framework compo-
nents. We also bring you reviews on a cou-
ple of books that address J2EE design and
real-world application of J2EE frame-
works.

So, return to the J2EE section, and as
the Roman emissary in my Asterix comics
would say: “make less factories, build
much objects.”

J2EE Design Patterns:
The Next Frontier

–continued from page 10

AJIT SAGAR J2EE EDITOR

father of Java himself, James Gosling, and
Dr. Alan Baratz, formerly president of
JavaSoft and of the Software Products &
Platforms division at Sun Microsystems,
now CEO of Zaplet, Inc.

As well as a full program of richly var-
ied technical sessions on J2SE, J2EE, and
J2ME, there will also be a high-powered
SuperSession in which key industry fig-
ures will dissect for delegates and atten-
dees the fast-emerging new Web Services
Paradigm of distributed Internet appli-
cations.

It’s all at the Hilton, New York, on
September 23–26. I’ll see you there!

–continued from page 44

Java Comes of Age
JEREMY GEELAN J2SE EDITOR

A
Q

A
Q

A
Q

A
Q

A
Q

IS PERSONALJAVA PART OF J2ME?
The short answer is yes. For the long answer, we'll refer to Sun’s FAQ for J2ME, which

states that PersonalJava was the “first Micro Edition technology.” Because PersonalJava
has been around for a while now, you’ll find more products with a version of it installed.
But sometime this year (2001), Sun is expected to replace the existing PersonalJava tech-
nology – based on Java 1.1 – with a new release based upon Java 2, and incorporated into
the J2ME concepts of Configuration and Profile components.

IS ALL THE JAVA API WITHIN J2ME?
No. Even PersonalJava – which has the most complete coverage of the Standard

Edition API – is still just a subset.

WHAT IS A “MIDLET”?
Actually, the correct word is MIDlet. A MIDlet is an application written for MIDP (the

Mobile Information Device Profile). You might find these on mobile phones, PDAs – in
general, small devices.

CAN I USE THREADS? IS THERE A PENALTY?
Yes, you can use threads, unless you’re writing a JavaCard applet. As for the penalties, it very

much depends upon how you want to use them, and the environment you are working within.
When developing for constrained devices, you always have to keep the resources you have avail-
able in the back of your mind. If you’re writing a MIDlet, and create 100 threads to try to load 100
images simultaneously, then there definitely will be a penalty – it undoubtedly won’t work.

DO I USE AWT OR SWING FOR MY GUI?
If you’re developing a PersonalJava application, then you have access to a modified

version of AWT – “modified” meaning that a few java.awt classes/methods are optional,
that some have been changed, and that there are some additions to the basic package. You
may be able to get Swing to work within a PersonalJava environment as well. A brief skim of the
PersonalJava forums show some success stories – and more than a few painful attempts. None
of the other J2ME “products” support AWT or Swing (for example, MIDP has the
javax.microedition.lcdui package, for user interfaces).

WHERE CAN I FIND MORE INFORMATION ABOUT WIRELESS TECHNOLOGIES?
The back issues of JDJ are one place you can look. For online information, you can look

at the following URLs:
1. http://developer.java.sun.com/developer/products/wireless/
2. Bill Day's J2ME archive: www.billday.com/j2me/
3. Sun's Wireless forums: http://forum.java.sun.com/

WHERE CAN I DOWNLOAD J2ME EMULATORS?
The J2ME Wireless Toolkit: http://java.sun.com/products/j2mewtoolkit/

download.html
To download the MIDP reference implementation on this page:

http://java.sun.com/products/midp/
CLDC : www.sun.com/software/communitysource/j2me/cldc/download.html
CDC (and the Foundation profile): www.sun.com/software/communitysource/

j2me/cdc/download.html

WHERE CAN I FIND DEVICES THAT RUN J2ME?
Move to another country. At the moment, there are a limited number of countries

where J2ME capable devices have been released – especially for mobile phones. While
you can probably find PDAs that support PersonalJava almost anywhere in the world, the
same is not true for mobiles.

In Japan, NTT DoCoMo has a number of phones from Panasonic, Fujitsu, Sony, and
others (only available in Japan, of course). In the U.S., Motorola has a couple of J2ME
capable mobiles. For a more comprehensive list, check out www.javamobiles.com/

A
Q

A
Q

A
Q

Java COM

76 AUGUST 2001

Personally, I think J2ME is what Java
is really about. Let’s leave aside the
fact that Java was originally devel-

oped (as project Oak) for just this purpose,
and see what it means today.

The demand for embedded micro-
processor systems has exploded, as con-
sumers and equipment manufacturers
require systems that incorporate more
“intelligence.” The “intelligence” is used in
a number of different ways. Systems can,
of course, be used to automate complex
tasks without user intervention – the tra-
ditional requirement. However, there’s
also a trend toward systems that are adap-
tive to changing needs and can communi-
cate with other equipment or with other
applications running on the same device.

These extra requirements are putting
traditional methods of designing embed-
ded systems under increasing strain.
Conventional embedded systems can suf-
fer from the following problems: increased
complexity and device count, lack of
portability of solutions, lack of support for
networking, poor performance, and so
forth. Designing a working embedded sys-
tem has been something of a black art,
and the number of engineers with the
required skills are in short supply.

Java, and J2ME in particular, offers a
number of solutions to these problems,
and also offers the promise of completely
new ways of building embedded systems.

The most obviously helpful feature of
Java is the notion of “write once, run any-
where.” This is achieved through the dis-
tribution of code via class files, and also
through the definition of the APIs. In the
past, it was extremely difficult to port an
application from one embedded platform
to another. With Java it’ll be easier to sell
your application into multiple markets.

Of course, the big bugbear of using Java
in embedded environments was always the
large amount of resources required to run
interpreted or Just-In-Time (JIT) JVMs – usu-
ally a desktop PC. Now that we have J2ME
and, in particular, Java processors, Java in
embedded systems will really take off.

However, my vision is a little different
from what you might expect. When most

of us start eulogizing about J2ME and Java
processors, it’s all about cheap color PDAs
using Java. Me, I get excited about light
switches. My company makes native
processors for Java-based applications,
and these are already small enough so we
can see that the cost of a Java-based con-
troller will, in five years time, be cheap
enough to put in your light switch.

Why would you want to run Java on
your light switch? If you need to control
your lights, you need some way of com-
municating with them, and this brings in
the other part of the equation: wireless.
Cheap wireless technologies change the
picture completely because they do two
things: slash installation costs and allow
you to work with any controller that sup-
ports wireless technology. However, tech-
nologies such as Bluetooth need Java; the
communication protocols need a reason-
able amount of processing power to man-
age them. In the past, providing this
resource for a light switch was unthink-
able, but now it’s just around the corner.

Java immediately brings other benefits
too. The light switch is now capable of
announcing itself to any passing con-
troller, which can discover what capabili-
ties it has and could even download a con-
troller applet from the switch.

And what is that passing controller? Very
probably a mobile phone running – guess
what? – Java! These devices are starting to
appear in the shops right now, so this is not
science fiction. Using mobile phones as con-
trollers also means you get wide-area network-
ing for free. Mind you, it might be disconcert-
ing to find that your huge phone bill is due to
the light switch talking to its friend in Japan.

Do I have to change all my light switch-
es? No, of course not. The light switch sim-
ply downloads a new interface, or possibly
the controller downloads an adapter class.
Easy! And automatic too – the user would-
n’t need to know it has happened.

The light switch is perhaps a facetious
example; it certainly won’t be the first appli-
cation of the technology, and it sounds a bit
like overkill. However, I think it’s the ulti-
mate point of this sort of technology: cheap,
controllable, and above all, adaptable.

H
om

e
J2

E
E

J2
SE

J2
M

E Fiat Lux

G U E S T E D I T O R I A L

Java COM

rob@vulcanmachines.com
AUTHOR BIO

Rob is a founder and technical director of Vulcan Machines, designers of native processors for Java-based applications. Rob has been
involved in the manufacture of semiconductors for nearly 20 years and has been designing microprocessors for 10. In the last three

years, he has concentrated exclusively on Java technology.

WRITTEN BY ROB MACAULAY
PUBLISHER, PRESIDENT,AND CEO

FUAT A. KIRCAALI fuat@sys-con.com

A D V E R T I S I N G
SENIOR VICE PRESIDENT, SALES AND MARKETING

CARMEN GONZALEZ carmen@sys-con.com
VICE PRESIDENT, SALES AND MARKETING

MILES SILVERMAN miles@sys-con.com
ADVERTISING SALES DIRECTOR

ROBYN FORMA roybn@sys-con.com
ADVERTISING ACCOUNT MANAGER

MEGAN RING megan@sys-con.com

ASSOCIATE SALES MANAGER
CARRIE GEBERT carrieg@sys-con.com

ASSOCIATE SALES MANAGER
CHRISTINE RUSSELL christine@sys-con.com

SALES ASSISTANT
ALISA CATALANO alisa@sys-con.com

E D I T O R I A L
EXECUTIVE EDITOR

M’LOU PINKHAM mpinkham@sys-con.com
EDITOR

NANCY VALENTINE nancy@sys-con.com
MANAGING EDITOR

CHERYL VAN SISE cheryl@sys-con.com
ASSOCIATE EDITOR

JAMIE MATUSOW jamie@sys-con.com
ASSOCIATE EDITOR

GAIL SCHULTZ gail@sys-con.com
ASSOCIATE EDITOR

BRENDA BREENE brenda@sys-con.com
ASSISTANT EDITOR

LIN GOETZ lin@sys-con.com

P R O D U C T I O N
VICE PRESIDENT, PRODUCTION AND DESIGN
JIM MORGAN jim@sys-con.com

ART DIRECTOR
ALEX BOTERO alex@sys-con.com

ASSOCIATE ART DIRECTOR
LOUIS F. CUFFARI louis@sys-con.com

ASSISTANT ART DIRECTOR
CATHRYN BURAK cathyb@sys-con.com

GRAPHIC DESIGNER
ABRAHAM ADDO abraham@sys-con.com

GRAPHIC DESIGNER
RICHARD SILVERBERG richards@sys-con.com

GRAPHIC DESIGNER
AARATHI VENKATARAMAN aarathi@sys-con.com

W E B S E R V I C E S
WEBMASTER

ROBERT DIAMOND robert@sys-con.com
WEB DESIGNER

STEPHEN KILMURRAY stephen@sys-con.com
WEB DESIGNER

PURVA DAVE purva@sys-con.com

WEB DESIGNER INTERN
CAROL AUSLANDER carol@sys-con.com

A C C O U N T I N G
ASSISTANT CONTROLLER

JUDITH CALNAN judith@sys-con.com
ACCOUNTS PAYABLE

JOAN LAROSE joan@sys-con.com

S Y S - C O N E V E N T S
VICE PRESIDENT, SYS-CON EVENTS

CATHY WALTERS cathyw@sys-con.com
CONFERENCE DIRECTOR

DANIELLE NAPPI danielle@sys-con.com
CONFERENCE MANAGER

MICHAEL LYNCH mike@sys-con.com
SALES EXECUTIVE, EXHIBITS

MICHAEL PESICK michael@sys-con.com
SALES EXECUTIVE, EXHIBITS

RICHARD ANDERSON richard@sys-con.com
SHOW ASSISTANT

NIKI PANAGOPOULOS niki@sys-con.com
JDJSTORE.COM

ANTHONY D. SPITZER tony@sys-con.com

Java COM

78 AUGUST 2001

H
om

e
J2

E
E

J2
SE

J2
M

E

Some of the more commonly asked ques-
tions on the various forums for J2ME
seem to be "What is J2ME?" and "Is <so-

and-so-product> a part of J2ME?" Here is
where you will find all the APIs that fall
beneath J2ME’s umbrella, and the packages you
will find within those APIs.

CONNECTED, LIMITED DEVICE CONFIGURATION
(CLDC) – VERSION 1.0

java.io input and output through data streams
java.lang fundamental classes
java.util collections, data and time facilities, other

utilities
javax. generic connections classes
micro-
edition.io

You can find more information on CLDC at the fol-
lowing URL: http://java.sun.com/products/cldc/

CONNECTED DEVICE CONFIGURATION
(CDC) – VERSION 0.2

java.io input and output
java.lang fundamental classes
java.lang.ref reference object classes
java.lang.reflect reflective information about

classes
java.math BigInteger support
java.net networking support
java.security security framework
java.security.cert parsing and management of

certificates
java.text used for handling text, dates,

numbers and messages
java.text.resources contains a base class for locale

elements
java.util collections, date/time, miscel-

laneous functions
java.util.jar reading Jar files
java.util.zip reading Zip files
javax.microedition.io connections classes

Look for more CDC information here:
http://java.sun.com/products/cdc/

MOBILE INFORMATION DEVICE PROFILE –
VERSION 1.0

java.io
java.lang CLDC, plus an additional

exception
java.util CLDC, plus timer facilities
javax.microedition.io networking support based

on the CLDC framework
javax.microedition.lcdui for user interfaces for MIDP

applications
javax.microedition.rms persistent data storage
javax.microedition.midlet defines applications and interac-

tions between app and envronment

The products page for MIDP is here:
http://java.sun.com/products/midp/

FOUNDATION PROFILE – VERSION 0.2
java.io see CDC
java.lang see CDC
java.lang.ref see CDC
java.lang.reflect see CDC
java.math see CDC
java.net see CDC
java.security see CDC

java.security.cert see CDC
java.security.acl access control lists
java.security.interfaces interfaces for generating keys
java.security.spec key specifications, and algo-

rithm parameter specifications
java.text see CDC
java.text.resources see CDC
java.util see CDC
java.util.jar see CDC
java.util.zip see CDC
javax.microedition.io see CDC

The profile products page is here:
http://java.sun.com/products/foundation/

J2ME GAME PROFILE
This is a proposed Micro Edition specification, so

nothing is yet defined. According to the JCP home page
for JSR #134 (the Game Profile), the following areas will
be covered:

1. 3D Modeling and Rendering for Games
2. 3D Physics Modeling for Games
3. 3D Character Animation for Games
4. 2D Rendering and Video Buffer Flipping for Games
5. Game Marshalling and Networked Communication
6. Streaming Media for Games
7. Sound for Games
8. Game Controllers
9. Hardware Access for Games

Stayed tuned to JDJ – we'll attempt to bring more
information as it comes to hand.

PERSONALJAVA SPECIFICATION – VERSION 1.2A
java.applet full support from JDK1.1.8
java.awt modified from JDK1.1.8
• note: there is an extra method for PJ for double-
buffering in java.awt.Component
java.awt.datatransfer full support
java.awt.event full support
java.awt.image full support
java.awt.peer modified
java.beans full support
java.io modified
java.lang modified
java.lang.reflect modified
java.math optional – may or may not be

supported
java.net modified
java.rmi optional
java.rmi.dgc optional
java.rmi.registry optional
java.rmi.server optional
java.security modified
java.security.acl unsupported
java.security.cert some classes required, some

optional
java.security.interfaces required if code signing is

included
java.security.spec required if code signing is

included
java.sql optional
java.text full support
java.text.resources modified
java.util modified
java.util.jar required if code signing is

included
java.util.zip modified

Additional PersonalJava specific packages are:
com.sun.awt for mouseless environments
com.sun.lang a couple of error & exception

classes

com.sun.util for handling timer events

PersonalJava will eventually be superseded by the
Personal Profile. For more information on the
PersonalJava Application Environment:
http://java.sun.com/products/personaljava/

JAVA TV – VERSION 1.0
javax.tv.carousel access to broadcast file and

directory data
javax.tv.graphics root container access and

alpha blending
javax.tv.locator referencing data and resources
javax.tv.media controls and events for man

agement of real-time media
javax.tv.media.protocol access to generic streaming

data in a broadcast
javax.tv.net IP datagram access
javax.tv.service service information access
javax.tv.service.guide supporting electronic program

guides
javax.tv.service.navigation services and hierarchical serv-

ice information navigation
javax.tv.service.selection select a service for presentation
javax.tv.service.transport information about transport

mechanisms
javax.tv.util creating and managing timer

events
javax.tv.xlet communications interfaces

used by apps and the app
manager

Get off that couch and check out the Java TV page
at the following URL:
http://java.sun.com/products/javatv/

JAVA EMBEDDED SERVER – VERSION 2.0
com.sun.jes.service.http servlet/resource

registrations
com.sun.jes.service.http.auth.basic http basic authen-

tication
com.sun.jes.service.http.auth.users management of

users and their
access

com.sun.jes.service.timer for handling timer
events

org.osgi.framework consistent model
for app. dev., sup-
ports dev. and use
of services

org.osgi.service.device detection of
devices

org.osgi.service.http http access of
resources

org.osgi.service.log logging facility

You can find more information on Embedded Server
on the following site:
www.sun.com/software/embeddedserver/

JAVA CARD – VERSION 2.1.1
java.lang fundamental classes
javacard.framework core functionality of a JC

applet
javacard.security security framework
javacardx.crypto extension package with secu-

rity classes and interfaces

Next time you use that American Express Blue card,
you may want to know how it works, so take a look
here:
http://java.sun.com/products/javacard/The

 Gr
eat

 J2M
EA

PI
Ru

ndo
wn

2

1

Java COM

80 AUGUST 2001

Founded in the U.K. in 1986, Insignia
started out developing technology that
enabled non-Intel computers to run

DOS and Windows applications. Twelve years
later, after a shift in focus, the first beta ver-
sions of the Jeode platform and Jeode
Embedded Virtual Machine emerged.
According to Insignia’s statistics, more than 35
million runtime units of Jeode technology
have been contracted by OEMs, OS,
and middleware suppliers.

Jeode includes class libraries for
either PersonalJava or EmbeddedJava
(depending on which implementation
the device manufacturer chooses), and
a tool suite that includes a configura-
tor, monitor, and deployment tools.
Jeode is available on a variety of oper-
ating systems – Windows CE 2.12 and

3.0, Windows NT4, VxWorks, Linux, ITRON,
Nucleus, BSDi UNIX, and pSOS – and also
supports a number of microprocessors:
ARM, MIPS, x86, Hitachi SuperH-3, Hitachi
SuperH-4, and PowerPC. Putting the OS
and microprocessor support together,
you’re likely to have a myriad array of
devices to choose from.

If you’re reading JDJ from back to
front, or have flipped to this page in the
bookstore (then stop loitering and buy it,
this isn’t a library, you know?), you
should read the iPAQ review first. JDJ’s
review used Jeode as the virtual
machine upon which to run test appli-
cations; so, to find out how Jeode per-
forms on an actual device, look there
first. However, in this review we look at
Jeode running on a desktop Windows
NT machine and compare its perform-
ance against a number of other VMs.

How Does It Work?
Jeode uses a tool called the

JeodeConfigurator to configure the vir-
tual machine before running an appli-
cation. This is useful if you want to
develop in the Windows NT environ-
ment (for example), but your applica-
tion will be running on a more limited
platform (such as WinCE). The
Configurator allows you to tune proper-
ties such as memory size, maximum
dynamic memory size, system memory,
Java memory, and stack size. You can
switch dynamic compilation on or off, set

the space used for dynamic compiling,
turn debugging on or off, and so on. If your

target device has a minimum of 8MB of RAM
available, you can quite easily set your mem-

ory size to 8MB and tweak other options
accordingly.

The Tests
As with the iPAQ review there are three

main tests I’ll be running Jeode through to
give a very basic idea of how it performs. Test
1 just displays some of the AWT components
on the screen ensuring that the VM isn’t doing
anything odd. Test 2 draws four triangles
using the drawLine() graphics method and
gives the time taken for the draw. Test 3 turns
a byte array of pixels into an image before
drawing that image to the screen. In addition,
I’ve also decided to run the Sequential
Benchmarks from Java Grande (www.java-

grande.org), which gives stats on base Java
functionality (additions, divisions, array
assignments, casts, etc.).

The five VMs I’ll be comparing are Sun JDK
1.1.8, Sun JDK 1.3, Sun PersonalJava
Emulation Environment, Insignia’s Jeode 1.7
(of course), and Microsoft VM 5.00.2752.
(Note: If you’re looking for proper benchmark-
ing software or benchmarks for various virtu-
al machines, see References at the end of the
review.)

RESULTS OF TEST

The only perceivable difference between
the virtual machines for test 1 is that the
version of PersonalJava that I’m using
(PJEE3.1) uses the truffle peer set, hence the
components look different to standard
AWT. Apart from that, each VM behaves the
same as the others.

RESULTS OF TEST

The results of this test, which was run in a
640x480 window, are shown in Table 1.

RESULTS OF TEST

The results for this test, again run in a
640x480 window, are shown in Table 2.

Table 3 shows the basic arithmetic opera-
tions provided in Section 1 of the Java Grande
benchmark.

Conclusion
On WinNT, Jeode appears to hold its own

against the competition, pulling in better
results than the PersonalJava Emulation

Jeode
by Insignia Solutions

H
om

e
J2

E
E

J2
SE

J2
M

E

REVIEWED BY ANTHONY SIMMONS

anthony.simmons@mailandnews..com

Insignia Solutions Inc.
41300 Christy St.
Fremont, California 94538
Web: www.insignia.com
Phone: 800 848-7677
E-mail: jeode@insignia.com

Test Environment
P800 with Windows NT 4.0 SP4

specs

P R O D U C T R E V I E W

TABLE 1 Test 2 results

SUN JDK 1.1.8 SUN JDK 1.3 SUN PJEE3.1 INSIGNIA’S JEODE 1.7 MS VM
6ms 8ms 14ms 7ms 5ms

TABLE 2 Test 3 results

SUN JDK 1.1.8 SUN JDK 1.3 SUN PJEE3.1 INSIGNIA’S JEODE 1.7 MS VM
41.39fps 38.17fps 1.41fps 25.97 46.44fps

3

Java COM

82 AUGUST 2001

H
om

e
J2

E
E

J2
SE

J2
M

E

Environment (which, in its defense, is not supposed to be a
production VM), and fairly similar results to a 1.1 VM. Running
on the iPAQ (see iPAQ review) Jeode manages to beat the Sun
VM on the pixel blit test, but not on the drawLine creation of
triangles. These are not comprehensive tests, of course, so I
invite you to draw your own conclusions, depending upon the
nature of the applications you’re developing.

The ability to tweak your environment to mimic a device,
before you even have the hardware, must count as a selling
point. And with Compaq and Insignia releasing a $19.95 ver-
sion of the software – at the very least, providing a link (see

References) for customers interested in using your Java soft-
ware is a no-brainer.

References
1. The Compaq/Insignia Jeode deal: www.compaq.com/prod-

ucts/handhelds/java.html
2. Java Grande: www.javagrande.org
3. Java Performance Report: www.javalobby.org/fr/

html/frm/javalobby/features/jpr/
4. CaffeineMark: www.pendragon-software.com/pendrag-

on/cm3/

P R O D U C T R E V I E W

Jeo
de

by
Ins

ign
ia S

olu
tio

ns

TABLE 3 Basic arithmetic operations

SUN JDK 1.1.8 SUN JDK 1.3 SUN PJEE3.1 JEODE 1.7 MS VM
Add:Int (adds/s) 342,023,616.0 423,154,144.0 5,484,367.5 330,135,392.0 294,593,472.0
Add:Long (adds/s) 130,653,904.0 125,009,064.0 5,105,004.0 136,632,960.0 144,011,424.0
Add:Float (adds/s) 6,175,184.5 6,496,946.5 2,935,569.5 5,888,018.5 6,636,422.5
Add:Double (adds/s) 6,168,210.0 6,480,500.0 2,616,249.2 5,743,532.0 5,674,309.0
Mult:Int (mult/s) 156,794,064.0 162,097,456.0 5,333,680.5 146,958,176.0 106,320,568.0
Mult:Long (mult/s) 81,603,784.0 31,864,452.0 4,595,019.0 67,299,240.0 43,600,560.0
Mult:Float (mult/s) 6,916,582.0 6,730,753.5 2,955,267.0 6,600,064.5 6,713,103.5
Mult:Double (mult/s) 6,586,268.0 6,417,045.0 2,582,760.5 5,900,742.0 5,090,095.5
Div:Int (div/s) 1,145,233,660.0 18,094,870.0 4,026,740.0 17,885,486.0 17,535,184.0
Div:Long (div/s) 186,619,200.0 5,711,497.0 2,843,259.8 6,549,932.0 7,426,344.0
Div:Float (div/s) 6,316,601.0 5,985,241.5 2,906,407.5 6,054,246.0 6,197,140.5
Div:Double (div/s) 6,378,075.0 6,096,599.0 2,532,772.8 5,686,125.0 5,274,612.0

Java COM

84 AUGUST 2001

While new technologies create
unprecedented opportunities for
telecommunications companies, their
core competencies lie in the network
itself, not the content delivered on it,
and beg for the development of com-
pelling consumer products and services.
As in other industries, content will
become king and Java developers will
play a key role in providing fresh content
in the form of applications.

The rapid evolution of the wireless
marketplace means carriers need skilled
support to deliver value-added services,
particularly with the imminent arrival
and adoption of GPRS and 3G. The vari-
ety of applications that consumers will
want is seemingly endless. While no one
particular killer app for mobile use is in
sight, it’s pretty clear that the killer app
for a teenaged girl in Texas is significant-
ly different from that for a middle-aged
man in Helsinki, despite the fact that
both demographics are wired. Mobile
operators simply won’t keep up with
demand for the variety of applications
that the consumer will want unless they
look to third-party developers to gener-
ate the applications and content for
their network.

Sun’s J2ME Creates Universal
Standard for Wireless Devices

Until recently, mobile devices repre-
sented a developer’s worst nightmare
because they typically have no standard
operating system, microbrowser, or
form factor, meaning all applications
had to be written for specific devices.

To combat these limitations, Sun has
taken a step toward creating a product

that addresses the need for a universal
standard for wireless devices. Java 2
Micro Edition (J2ME) is Sun’s version of
Java aimed at machines with limited
hardware resources, such as PDAs, cell
phones, and other consumer electronic
and embedded devices. J2ME addresses
the needs of devices with as little as
128KB of RAM and with processors a lot
less powerful than those used on typical
desktop and server machines.

Like the other Java technologies
(J2SE and J2EE), the J2ME platform
maintains these advantages:
• Built-in consistency across products

to run anywhere, anytime, over any
device

• Portability of the code
• Leveraging of same Java program-

ming language
• Safe network delivery

In addition, applications written
with J2ME technology are upwardly
scalable to work with the J2SE and J2EE
platforms, creating a platform that
enables thin-client applications to work
in a larger client/server environment.

Beyond these cross-technology
advantages, J2ME extends the promise
of Java by eliminating the problem of
device proliferation while also providing
additional benefits. Through caching on
the device, it solves the problem of spot-
ty network coverage. It also provides
graphic capabilities for wireless devices,
representing even more development
opportunities. Applications written in
Java are future-proofed to evolve with
the hardware. Devices that support Java
permit easy upgrades of applications on

hardware so that consumers can easily
change or customize their devices as
needed.

J2ME Gaining Widespread Acceptance
Network operators, such as

Cingular, NTT DoCoMo, Vodafone,
Telefonica, and others, have publicly
proclaimed their support for J2ME.
Device manufacturers, such as Nokia,
Motorola, Siemens, and Research in
Motion (RIM), are building J2ME into
their next-generation wireless handsets.
Soon, the majority of mobile phones,
including less expensive models, will be
able to run applications written in Java.
In fact, Nokia has predicted that in 2002
it will sell more than 50-million hand-
sets with Java, and even more by the
end of 2003 – populating the world with
at least 100-million Java-equipped
mobile phones. Furthermore, J2ME
technologies also played a major role at
JavaOne 2001, Sun’s worldwide Java
developer conference, signaling the
mainstream acceptance of Java on
mobile devices, smart cards, and in
embedded solutions.

Based on this widespread support, the
message to developers is loud and clear –
real J2ME-based devices are on sale
today; network operators are beginning
to deploy the technologies to support
downloadable Java code to devices, and
ASPs and traditional ISVs are currently
developing software based on J2ME.
Tremendous opportunity abounds. Now
that the technologies are ready and rapid
adoption is underway, developers should
be hustling to build and deploy real solu-
tions for Java-powered devices.

Wireless Apps Wanted:
Developers Only Need Apply

WRITTEN BY
KIMBERLY MARTIN

With the growth of the wireless industry, and telecom-
munications providers realizing the potential of provisioning per-
sonalized mobile applications for customers, Java developers are
positioned to capitalize on a tremendous market opportunity.The
number of wireless communications devices installed worldwide
has already exceeded the number of desktop PCs,and more explo-
sive growth is anticipated.

I N D U S T R Y C O M M E N T A R Y

A market for third-party
J2ME applications is about to explode

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

86 AUGUST 2001

Consumers will also benefit. Since
Java is platform-independent, programs
will become vendor-independent; for
example, apps written for Motorola
phones will be able to run on mobile
phones from NEC without changes. By
selecting a Java-enabled phone, con-
sumers won’t be limited to games and
applications bundled with the firmware
on their phone, but will be able to
replace them with new ones – down-
loadable anytime.

Keys to Success
To encourage the development com-

munity to build such applications, carri-
ers must manage their channel effec-
tively. They must make it easy for the
developer to roll out applications to the
consumer and provide the billing and
metering services for the developer,
ensuring royalties are tracked. A market
for third-party J2ME applications will
flourish when carriers can effectively
target applications to specific con-
sumers and direct payments to develop-
ers based on usage.

To effectively meet these two condi-
tions, ATG has developed a service-
delivery solution that will provide server
infrastructure support for Java technol-
ogy–enabled wireless devices. Named
the ATG Mobile Application Provisioner,

it helps the developer as well as the con-
sumer. First, it provides developers with
access to wireless carriers’ customers
and billing services so that the develop-
er community can leverage the carriers
as a distribution channel for their appli-
cations. Second, it uses scenario-driven
personalization so that carriers can
design highly targeted offers to their
customers.

To keep the consumer happy, net-
work operators must ensure that con-
sumers are offered the right application,
at the right time, on the right device.
Consumers must view these new appli-
cations and services as a benefit, not a
blatant mechanism for generating rev-
enue on the carrier’s part. Furthermore,
consumers want one bill, and develop-
ers want a simplified way to track and
collect royalties. Successful carriers will
extend their already robust billing and
metering capabilities to seamlessly bill
consumers for new applications and
services whether created by the carrier
or by a third-party developer.

By considering contextual informa-
tion such as time of day, location, and
past behavior, carriers can target the
offering of new applications to individ-
ual consumers. For instance, a con-
sumer who has purchased a map of the
New York City subway system while on a

trip to Manhattan, would probably view
it as a benefit to be offered a map of
London’s Tube system the next time he
or she lands at Heathrow. This hyperper-
sonalization ensures that the consumer
is not presented with irrelevant offer-
ings, while also specifically targeting the
application to qualified buyers. For the
developer, this means there’s a higher
likelihood of purchase and increased
revenue potential.

Through advanced personalization
capabilities, carriers that provide feed-
back to the developer on the applica-
tion’s success will ensure that their
content is always fresh and always rel-
evant. For example, a developer of a
wildly successful 1.0 version of a game
should be encouraged monetarily to
develop a version 2.0. Likewise, target-
ing those users of version 1.0 should
provide a great base of customers for
the 2.0 version.

The convergence of wireless hard-
ware and software is inevitable. J2ME is
the current leader and standard by
which this convergence is starting. By
effectively managing relationships with
suppliers and consumers in the devel-
opment community, carriers will be able
to reap the rewards of J2ME.

I N D U S T R Y C O M M E N T A R Y

kmartin@atg.com

AUTHOR BIO
Kimberly Martin is a
product manager for

ATG, a provider of
relationship

management and
e-commerce

products and
services. She’s
responsible for

product direction and
strategy for the

mobile and wireless
market.

H
om

e
J2

E
E

J2
SE

J2
M

E

Java COM

88 AUGUST 2001

This is the first in a series of reviews of
devices that are capable of running
Java 2 Micro Edition – be it

PersonalJava, MIDP, or any other new pro-
file that comes along. In this and future
issues of JDJ, we’ll try to provide a run-
down of the various kinds of handheld,
embedded, and mobile devices, and how
well they run your favorite language. First
up is Compaq’s iPAQ.

The iPAQ, a pocket PC from
Compaq, (see Figure 1), comes in two
flavors. There’s the gray-scale H3135,
which is 5.1"x3.2"x0.6" and weighs in
at 6.3 ounces, and the color H3635,
which is the same size but 0.3 ounces
lighter (according to the specs, at
least). Both use the same processor, a
206MHz Intel StrongARM 32-bit
chip;however, the H3635 has an extra
16Mb of memory.

The other important specs are a
color LCD touch screen that supports
4,086 colors with a resolution of
240x320 pixels for the H3635; and a 15
gray-scale, semitransmissive STN LCD
touch screen for the H3135. A
CompactFlash Expansion slot is includ-
ed in both, and extra RAM/modem
options are available separately.

The iPAQ is one of the better look-
ing PDAs. Considerable thought has
gone into the design of the silvery case
and it just looks good in the hand – and
feels comfortable as well. A litmus test of
its appearance is undoubtedly: Would

you feel safe using the product in public?
(That is, is someone likely to mug you and

run off with it?) The iPAQ definitely rates
as a device that little old ladies are likely to

knock you senseless with their handbags
just to get their hands on.

But enough about the boring hardware
stuff. What we really want to know is the
caffeine factor!

To use Java on any device when it
hasn’t been preinstalled will always be a
hassle – usually it means a hefty down-
load and then a problematic installa-
tion. Sun has a runtime environment
for Java, available for the StrongARM
processor (WinCE); however, it’s cur-
rently in beta, so performance is less
than stellar (based on my prior
experience). Your average user
probably isn’t going to bother,
which is disappointing, espe-
cially if you’re developing
applications and want to tar-
get the largest audience possi-
ble. It’s more disappointing
when you want to target the
fastest processor currently
available and aren’t likely to
get the performance your
application requires.

However, Compaq has recently an-
nounced a $19.99 deal for users to purchase
the JeodeRuntime for the iPAQ (see the Jeode
review in this issue of JDJ), so for the purpos-
es of this review we’ll be using the
JeodeRuntime. And with ActiveSync, the
installation just means downloading the run-
time to the device.

When evaluating a Java-ready device, if it
has a screen, only one thing really matters –
graphics performance. Everything else is sec-
ondary. After all, you’re not likely to be writing
servlets for your handheld (although consid-
ering the perversity of some people in the
development community, maybe you are, so
scratch that as an argument). As the iPAQ
doesn’t come with a modem built in, network
connectivity performance is of secondary
importance. As the test model I was supplied
with didn’t come with the modem option, it’s
a nonstarter.

The tests we use are fairly simple; howev-
er, they do give us an idea of what we can
expect from the iPAQ with more serious Java
applications. In all cases, the tests are run
(where graphical) using the full screen size
available.

H
om

e
J2

E
E

J2
SE

J2
M

E

REVIEWED BY ANTHONY SIMMONS

anthony.simmons@mailandnews..com

P R O D U C T R E V I E W

iPAQ
by Compaq
Computer Corporation

Compaq Computer Corp.
20555 SH 249
Houston, Texas 77070
Web: www.compaq.com
Phone: 281 370-0670

Specifications
Processor: 206 MHz Intel StrongARM
32-bit processor
Memory: 16MB RAM (H3135) or
32MB RAM (H3635)16MB ROM
Display:15 Grayscale STN (H3135)
or 4086 Color TFT
240x320 resolution
Size: 5.11" x 3.28" x 0.62"
Weight: 6.3oz (H3135) or 6.0oz (H3635)
Power: Lithium Polymer Rechargeable
battery or AC Adapter
Input: Touch-sensitive display, software
keyboard, handwriting recognition, voice
recorder, five application buttons, five-way
joystick, on-off and backlight buttons and
note taker
Ports: USB, CompactFlash expansion,
infrared, microphone, speaker
Operating System: Windows CE
(a version of Linux is available for the
iPAQ – see www.pocketlinux.com)
Java Preinstalled: No. PersonalJava
Runtimes are available from Sun, Insignia
(Jeode), and others
Price: U.S.$399 (H3135) or U.S.$599 (H3635)
Notes: A 64MB RAM option is available;
see the Compaq Web site for more details.

specs

FIGURE 1 The iPAQ

Java COM

90 AUGUST 2001

H
om

e
J2

E
E

J2
SE

J2
M

E
P R O D U C T R E V I E W

iPA
Q b

y C
om

paq
 Co

mp
ute

r C
orp

ora
tio

n 1

2

3

iPAQ TEST
The first test is an AWT application (or applet;

it can run as either) with a few of the basic AWT
components on a single screen (see Figure 2). What
we want to know is how responsive are the compo-
nents. When you click a button, is it slower to
rebound than a snail on depressants? When you
type (or write) a message into a text field, are you
likely to sprout cobwebs under your arms before
you see the text appear?

As expected, the news for the iPAQ is good –
there’s no noticeable sluggishness on any of the
components with Jeode (the same is true for Sun’s
PersonalJava runtime). When entering text with
the handwriting tool, it appears in the text boxes
instantaneously; there are no perceptible prob-
lems with button, checkbox, or list drawing.

iPAQ TEST
The second test is basic graphics performance (see

Figure 3). In this case, the test application uses one
of the most fundamental graphics operations –
drawLine() – to create random triangles on the
screen. Note: The reason for using
drawLine() to create the triangles, and
not fillPolygon(), is that MIDP doesn’t
support the fillPolygon() method,
and it’s useful to use code in our
PersonalJava test that’s similar to
what we might use in a MIDP test,
for example. The application does-
n’t provide the frame rate, but
rather the length of time to draw
four random triangles on the screen.

In this case, the iPAQ (unlike the
screenshot shown in Figure 3) starts to
struggle a bit more: the average time need-
ed to draw the four triangles is 450–800ms.
Interestingly, in this test only, Sun’s PersonalJava
beats Jeode hands down, taking only a few mil-
liseconds to complete the operation.

iPAQ TEST
The third test, if you’re developing a game, is

probably the most important: raw pixel through-
put. In other words, if you provide an array of pixel
colors, how fast can they be blitted to the screen as
an image? This is useful if you want to write a
game with more interesting particle effects, for
example. This test application creates a random
array of black and white colors, links the array to
image creation, and paints the pattern to the
screen as an image. Here we’re interested in the
maximum frame rate possible. Here the iPAQ pro-
duces an average frame rate of 10.6–10.8 frames
per second – not quite as high as I hoped, but still
an improvement on the Sun beta (around 1.3 fps).

Conclusion
Performance

With the JeodeRuntime, the iPAQ performs fairly well. It’s
good enough for minor animations, puzzle games, and the
like, though perhaps not powerful enough for more advanced
particle effects, 3D graphics, and more. Of course it would take
more than a week’s evaluation to really establish how the PDA
fits in the gaming world, but certainly, for business applica-
tions, the power is more than adequate.

Secret Agent Factor
The iPAQ is a PDA, so secrecy isn’t really

an option while you’re using it, and in terms of
the competition, it comes in a little larger

than a Palm Vx. However, it’s an extremely
sleek-looking piece of hardware – so a wor-
thy addition to any budding spy’s kit.

For the Gadget Geek
This device wins outright in the raw power

stakes. But it’s Windows CE, so it’s got all
those…Windows…bits and pieces. For real-

ly happy hacking, install an embedded ver-
sion of Linux on it (for example, www.pocketlin-

ux.com), and compile a version of Java for Linux.
You’ll probably destroy any chance you had of being

truly productive with the device, but who cares! It’s a PDA, it’s
Linux, it’s Java… oh, just forget it!

Overall
From a Java developer’s point of view, the iPAQ’s proces-

sor is definitely a selling point. It looks good, has specifica-
tions that generally could put some laptops to shame, and
coupled with Jeode, could be used to produce some fairly
good multimedia applications (perhaps not cutting-edge,
though). But bear in mind, if you’re developing to take
advantage of this extra power, your market may be fairly lim-
ited for a while; however, more and more devices are appear-
ing with 200+ CPU speeds, so the market may not stay small
for long.

References
1. Compaq handhelds: www.compaq.com/showroom/hand-

helds.html
2. The Compaq/Jeode deal: www.compaq.com/products/|

handhelds/java.html
3. Jeode: www.insignia.com/products/default.asp

FIGURE 2 AWT application FIGURE 3 drawLine()

Java COM

92 AUGUST 2001

Missing from that discussion was
one of the more unusual APIs included
in MIDP – the Record Management
System – which can be found in the
package javax.microedition.rms. This is
a persistent storage system based on a
“simple record-oriented database.” If
you want to store data on a device (and
not on the server, for example), you’ll
need to become very familiar with RMS.

The most fundamental object in RMS
is the javax.microedition.rms.Record-
Store, which is owned by a particular
suite of applications currently installed
on the device. What this means is that all
the applications in the suite can share
the same data, if necessary – games, for
example, can store their saved state in
one RecordStore. A phone book applica-
tion might share its data with a simple
scheduling application – as long as it’s in
the same suite, of course.

To open (or create) a new RecordStore,
use a static method found in the
RecordStore class. Assuming we wanted
to write a Phone Book MIDlet, we would
probably call our store “PhoneBook”.

RecordStore store =

RecordStore.openRecordStore("PhoneB

ook",true);

The Boolean value “true” is used to
specify that the store will be created, if
necessary.

A RecordStore has a number of
methods that can be applied to it. The
most useful of these are:
• addRecord(…): Add a new record to

the store
• deleteRecord(…): Delete a record

from the store
• getNumRecords(…): Get the number

of records in the store
• getRecord(…): Get a copy of data in a

record

• getSize(): Get the size of the record
store (in bytes)

• getSizeAvailable(): Get the available
space for the store to grow (also in
bytes)

• setRecord(…): Set the data in a speci-
fied record

Enumeration Is Not the Same as Remuneration
Use a RecordEnumeration to move

back and forth through the store and
view the data:

RecordEnumeration recordEnum =

store.enumerateRecords(null,

pbcomp, false);

Where the first argument (null) is the
filter that specifies the subset of records
that will be enumerated, the second
argument (pbcomp) is a Record-
Comparator (more on that soon) that
specifies the order, and the final argu-
ment (false) specifies that the enumera-
tion will, in this case, not be kept up-to-
date with the contents of the store (in
other words, the enumeration is a copy
of the store at that point).

A RecordComparator, as mentioned
before, is used to order an enumeration.
Create a comparator by implementing
the RecordComparator interface. The
interface describes a single method
(compare) that returns an integer value
depending upon whether the contents
of one byte array FOLLOWS, PRECEDES,
or is EQUIVALENT to a second byte
array (see Listing 1). Listings 1–7 can be
found on the JDJ Web site, www.javade-
velopersjournal.com.

Now that we have an enumeration of
records, what can we do with it? The
important methods in the
RecordEnumeration are:
• hasNextElement(): Does the enumer-

ation have more elements?

The Missing Bits

WRITTEN BY
JASON BRIGGS

In Part 1 of this article, which can be found in JDJ (Vol. 6, issue
7), we covered the basics of creating a Mobile Information Device
Profile application (also called a MIDlet).We covered some of the
functionality available in the user interface packages and a slightly
more advanced graphics example.

M I D L E T S

A beginner’s guide to writing applications
for the MID profile

H
om

e
J2

E
E

J2
SE

J2
M

E

Part 2 of 3

FIGURE 1 Main menu

FIGURE 2 Screen

FIGURE 3 Entry Screen

FIGURE 4 List of tests

FIGURE 5 Output from tests

Java COM

Java COM

94 AUGUST 2001

• hasPreviousElements(): Are there
elements prior to the current posi-
tion?

• nextRecord(): Get a copy of the data
in the next record

• nextRecordId(): Get the recordId of
the next record

• numRecords(): Get the number of
records in the enumeration

• PreviousRecord(): Get a copy of the
data in the previous record

• PreviousRecordId(): Get the recordId
of the previous record

In the case of our aforementioned
PhoneBook application, we might dis-
play the contents of the phone book on
a canvas and use the up and down but-
tons to scroll back and forth through
the enumeration dataset. On the can-
vas we could trap the key press and
then pass the game action (game
actions are special events, such as
pressing an arrow button, which are
mapped to particular keys) back to the
parent application (containing the data
store) to handle:

public void keyPressed(int k) {

parent.processAction(getGameAction

(k));

}

In the parent class (in this case the
MIDlet), the processAction() method
will move forward and backward in the
enumeration depending upon whether
the up or down arrow has been
pressed. For example:

if (action == Canvas.UP &&

recordEnum.hasPreviousElement()) {

currentRecordID =

recordEnum.previousRecordId();

set(store.getRecord(currentRecordI

D));

}

else if (action == Canvas.DOWN &&

recordEnum.hasNextElement()) {

currentRecordID =

recordEnum.nextRecordId();

set(store.getRecord(currentRecordI

D));

}

In this case, currentRecordID is an
int that holds the recordId the enumer-
ation is currently pointing to, and
set(…) is a user-defined method that
calls the canvas and changes the dis-
play accordingly.

Listing 2 provides the full method

source; Listing 3 provides the source of
the canvas class.

Large Mouthfuls, or Multiple Bytes
The records in a store are byte

arrays, meaning you store and retrieve
your records as simple byte arrays. So
you can either work with the raw bytes
(as I’ve done in my PhoneBook applica-
tion, for simplicity’s sake), or use a
combination of ByteArray and data
streams. Obviously, unless you have a
requirement for fixed data sizes (which
is inefficient, but again that’s what I’m
using in the PhoneBook), the stream
combination will probably be the more
efficient way to go, in terms of the most
effective use of storage space.

It has the added advantage that
using the various read methods in a
DataInputStream (for example,
readInt, readLond, readShort,
readUTF), keep you one step away
from the messy details of how that data
is actually stored in the byte array.

To use the stream combination,
you’ll probably do something like the
following:

ByteArrayOutputStream baos = new

ByteArrayOutputStream();

DataOutputStream dos = new

DataOutputStream (baos);

dos.writeUTF("Hello");

dos.writeUTF("Test");

dos.writeInt(100);

byte rec[] = baos.toByteArray();

In comparison, the save() method
in PhoneBook.java uses a fixed length
name and variable length phone num-
ber, creating byte-arrays of the data
using a specially defined function
called rpad (which adds spaces on the
end of the name if it’s not long enough)
(see Listing 4).

I leave it up to the individual to
decide which way works better for
them. One of the joys of Java is that
while it provides functionality to insu-
late developers from any “nastiness,” it
also allows you to get in there and “do
things your own way.”

Figures 1–3 show the main screens
in the PhoneBook MIDlet.

Networking: It’s More than Making
Friends and Influencing People

MIDP has to include networking
support. A large number of Java devel-
opers in lynch-mode, with nooses
made from coaxial cable and baseball
bats molded out of melted-down net-
work cards, would turn up on Sun’s

M I D L E T S
H

om
e

J2
E

E
J2

SE
J2

M
E

Java COM

• Real-World Web Services: Is It Really XML's Killer App?

• Demystifying ebXML: A Plain-English Introduction

• Authentication, Authorization and Auditing: Securing
Web Services

• Wireless: Enable Your WAP Projects for Web Services

• The Web Services Marketplace: An Overview of Tools, Engines
and Servers

• Building Wireless Applications with Web Services

• How to Develop and Market Your Web Services

• Integrating XML in a Web Services Environment

• Real-World UDDI

• WSDL: Definitions and Network Endpoints

• Implementing SOAP-Compliant Apps

• Deploying EJBs in a Web Services
Environment

• Swing-Compliant Web Services

• and much, much more!

SAVE$10Off
SAVE$10Off

the annual
subscription rate

Receive 12 issues of
XML-Journal for only $79.99!

That’s a savings of $10 off
the annual subscription rate.

Sign up online at
www.sys-con.com or call

1-800-513-7111
and subscribe today!

ANNUAL COVER PRICE

$89.99
ANNUAL SUBSCRIPTION RATE

$79.99

$10

YOU PAY

YOU SAVE
Off the
Subscription Rate

Co
m

in
g

in
 A

u
gu

st
: XML Training and Certifications

Adding value to your knowledge of XML

XML Essentials
carriglearning – an online
learning course

XML Tutorial: Get into DTD
Development Mode

XML Servers – An Overview

An Introduction to JDOM
Creating a JDOM document

Designing Processable XML Tagging
Languages
The Canonical vs Transactional
approaches

Java COM

96 AUGUST 2001

doorstep in Palo Alto baying for blood if
a Java product was released without
adequate network support, and Sun
knows that. Accordingly, you can find
the various network IO classes in the
javax.microedition.io package.
However, network connectivity is han-
dled differently from what you might
be used to in the Standard Edition of
Java (in java.net.*). One major differ-
ence is that instead of creating/open-
ing a socket or a URLConnection and
then getting an input stream from that
object, you use the Connector class to
create and open a Connection, an
Input/OutputStream, or a
DataInput/DataOutputStream. For
example:

HttpConnection c =

(HttpConnection)Connector.open("ht

tp://……………..");

There are a number of Connection
interfaces defined in javax.microedi-
tion.io: Connection, ContentCo
nection, DatagramConnection, Http-
Connection, InputConnection, Output-
Connection, StreamConnection and
StreamConnectionNotifier.

In Listing 5 we’ll look at the
HttpConnection interface using a
MIDlet called HttpTest.java. In this
application we’ll define a test method
that takes a URL string as a parameter
and then opens an HTTP POST con-
nection to that URL (for more informa-
tion on HTTP see RFC 2616 –
www.ietf.org/rfc/rfc2616.txt?num-
ber=2616).

Looking at Listing 5 line by line:
Lines 1 and 2 declare the
HttpConnection object and the
InputStream. Line 5 opens an
HttpConnection to the supplied URL.
Line 6 sets the request method on the
connection. In this case we want to
perform HTTP POST operations. Line 8
opens an input stream to the connec-
tion. Line 10 tries to get the content
length. If a content length is provided,
lines 12 and 13 create a byte array and
then read from the stream into the
array. If no length was provided, lines
18–22 read from the stream, character
by character, until a terminator is
reached. Lines 15 and 23 return the
result from either set of operations.
Finally, lines 27–30 and 32–35 close the
InputStream and Connection.

I think you’ll agree that this is fairly
painless networking (as with most
communications in Java).

What else is included in this MIDlet?
HttpTest creates a simple list of five

tests that’s used as the first screen the
user sees. When the user selects a test,
and then selects the OK command, the
code in Listing 6 is executed.

In Listing 6 lines 2–5 destroy the
application if the Exit command was
selected. Line 7 checks the current
state, which is used to switch between
the two screens, and line 8 changes the
display to a TextBox (tb), which will be
used to show the output. Line 11 gets
the currently selected index in a list of
tests that can be executed. Line 13
checks that the test selected is valid.
Line 14 calls the test method with the
URL of a TestServlet and passes a
parameter action, which will be in the
form, http://localhost:8080/servlet/
TestServlet?action=n (n being the num-
bers 1-5, depending upon the user’s
selection). Lines 16–18 check that the
test method returned a valid result, and
assigns that result to the output
TextBox, using the setString(...) method.
Finally, lines 26–28 change the display
back to the list of available tests.

It Takes Two
One other thing is missing from this

network conversation – Test-
Servlet.java, shown in Listing 7. This is
not the right place for a deep and
meaningful discussion on servlet
development, but to summarize what
the servlet is doing:
1. A doPost event arrives to be handled

by the servlet.
2. The servlet gets the writer for the

ServletResponse object.
3. The content type of the response is

set.
4. The parameter “action” value is

retrieved from the ServletRequest.
5. The parameter is converted to an int,

and the word “test” is appended to a
string a number of times based upon
that number.

6. Finally, the number is concatenated
on the end of the string, and the
result is written out using the writer.

Figures 4 and 5 show the MIDlet
(and servlet, behind the scenes) in
action:

Summary
We’ve now covered the major parts

of creating MIDP applications. In Part
3, we’ll put all the pieces together
extending the PhoneBook application
already created. We’ll retrieve data
using an EJB, and funnel it through a
servlet and into our J2ME front end.

M I D L E T S

jasonbriggs@sys-con.com

H
om

e
J2

E
E

J2
SE

J2
M

E

A DEEPERA DEEPERA DEEPER

ATAT

A n a t o m y o f a J a v a p r o g r a mA n a t o m y o f a J a v a p r o g r a m

W r i t t e n b y J a c q u i e B a r k e rW r i t t e n b y J a c q u i e B a r k e r

Java COM

98 AUGUST 2001

This excerpt discusses the specifics of coding the Student
Registration System (SRS). Java is an extremely rich language,
and our goal is not to duplicate the hard work that has gone
into existing Java language books, but rather to complement
them by showing you how to bridge the gap between produc-
ing an object model and turning it into live Java code.

Setting Up a Java Programming Environment
Everything you’ll need to get started programming in Java

on various platforms – Solaris, Windows, Linux – is available
for free with Sun Microsystems’ Java 2 Software Developer’s
Kit (SDK), which can be downloaded from Sun’s Web site,
http://java.sun.com. We strongly advise that you take the time
now to establish your Java development environment, so
you’ll be prepared to experiment with the language as you
learn.

Note that the Java 2 SDK is a command line–driven toolkit,
which means that on a Windows platform you’ll be opening
up an MS-DOS Prompt window, from which you’ll be doing all
of your work (UNIX and Linux are naturally command-line
oriented). Of course, there are also numerous Java Integrated
Development Environments (IDEs) to choose from, some of
which are available on a free trial basis as Web downloads.
However, my personal bias is that if you first learn Java from
the ground up, writing all your code from scratch using only
Sun’s SDK and your favorite text editor, you’ll gain a much bet-
ter understanding of Java language fundamentals than if you
rely too heavily on an IDE, particularly those that provide
drag-and-drop, GUI-building capabilities and automated
code generation. You can always consider graduating to an
IDE after you’ve mastered the language to take advantage of

their debugging and code/project management features,
among others.

Anatomy of a Java Program, Revisited
The anatomy of a trivially simple Java program, which con-

sisted of a main() method, contains the logic of our program
inside of a class “wrapper” (see Figure 1).

Such a class would reside in a file by the name of class-
name.java; Simple.java, in this example.

Note: The external name of the file containing the source
code of a Java class must match the name given to the class
inside the file, including the same use of upper/lowercase,
with .java tacked on at the end. Java is a case-sensitive lan-
guage, even on operating systems like DOS that are tradition-
ally case insensitive in most respects.

A common error for beginners is to assume that case does-
n’t matter, and to name the file for our example program sim-
ple.java, SIMPLE.java, or some other variation. This leads to
compilation problems, as we’ll see in a moment.

A nontrivial Java application consists of many such .java
files, because the source code for each class comprising your
application typically (but not always) resides in its own *.java
file.

You’ll have one .java file for each of the domain classes that
you defined in your object model. For the SRS application, for
example, we’ll have eight. Course.java, Person.java,
Professor.java, ScheduleOfClasses.java, Section.java,
Student.java, Transcript.java, and TranscriptEntry.java.

You’ll also typically have a separate .java file for each of the
primary “windows” comprising the graphical user interface of
your application, if any. For the SRS application, we’ll have

This is an excerpt from

Chapter 13 of Beginning Java

Objects written by Jacquie

Barker,published by Wrox Press.

No part of this excerpt

may be reproduced, in any form

or by any means without the

prior written permission of the

publisher, except in the case of

brief quotations embodied in

critical articles or reviews.

J A V A B A S I C S
J2

SE
H

om
e

J2
E

E
J2

M
E

Java COM

100 AUGUST 2001

J

two: MainFrame.java and PasswordPopup.java.
Typically you’ll have a separate .java file that contains the

“official” main() method that serves as the application driver.
One of the primary responsibilities of this driver class’s main()
method is to instantiate the core objects needed to fulfill a sys-
tem’s mission; of course, actions taken by the objects as well as
by the user will cause additional objects to come to life over
time, as the application executes. The main() method is also
responsible for displaying the start-up window of the graphi-
cal user interface of an application, if any (see Figure 2).

We’ll name the driver class for our Student Registration
System application SRS, so of course it will need to be stored
in a file named SRS.java.

Finally, you’ll quite possibly have other “helper” classes
necessary for behind-the-scenes application support; with
the SRS, we’ll have a need for three such classes:
CollectionWrapper.java, CourseCatalog.java, and Faculty.java.

Assuming that you’ve properly installed Sun’s Java 2 SDK, a
Java source code file (.java file) can be compiled at the com-
mand line via the command:

javac classname.java

for example:

javac Simple.java

Again, pay close attention to match upper/lowercase
usage; if you were to name your class Simple (uppercase “S”),
but store it in a file named simple.java (lower case “s”), the
Java compiler would generate the following compilation error:

Public class Simple must be defined in a file called

'Simple.java'.

Note that you can compile multiple files in a single step:

javac file1.java file2.java ... filen.java

or

javac *.java

Assuming that no compilation errors
occur, compilation produces at least one
classname.class file for every .java file; for
example, Simple.class for our sample pro-

gram (see Figure 3). (We’ll see later in this
article why more than one .class file

might be produced from a single
.java file.) The *.class files contain

platform-independent Java byte
code that can be run on any
platform for which there is a
Java Virtual Machine available.

To run a Java program from the command line, type the fol-
lowing to invoke the JVM:

java MainClassName

for example:

java Simple

or

java SRS

where MainClassName is the name of the class file (minus the
.class suffix) containing the compiled byte code version of the
“official” main() driver method for your application.

The JVM loads the byte code for whatever class you’ve
named, and if it discovers a main() method within that byte
code with the proper signature (recall that the name of the
argument being passed into the main() method – args, in this
case – is the only thing that’s flexible in the signature):

public static void main(String[] args)

then the JVM executes that main() method to jump-start your
application. From that point on the JVM will load additional
classes – either classes that you’ve written and compiled or
classes built into the Java language – as needed, when refer-
enced by your application. That is, the first time the SRS appli-
cation has occasion to refer to the Person class, the byte code
for the Person class will be loaded into the JVM, and so forth.

It’s important that you don’t type the .class suffix when
attempting to run a program, as you’ll get an error:

java Simple.class

Exception in thread "main"

java.lang.NoClassDefFoundError: Simple/class

which is, to say the least, not very intuitive! This particular
error message arises because the Java compiler interprets the
name Simple.class as being the name of a class called “class”,
to be found within a package called “Simple”; we’ll be talking
about packages shortly.

Why must the main() method of an application be
declared static? At the moment that the JVM first loads what-
ever class you’ve told it to load to jump-start your application,
no objects exist yet, because the main() method hasn’t yet exe-
cuted; and it’s the main() method that will start the process of
instantiating your application’s objects. So, at the moment of
application start-up, all the JVM has at its disposal is a class;
and a static method is a type of method that can be invoked on
a class as a whole, even if we don’t have an instance of that
class handy.

FIGURE 1 A simple Java program

ava is a
case-sensitive

language”

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

102 AUGUST 2001

One final note about program structure: we said that the
source code for each class comprising your application typi-
cally resides in its own .java file. It’s actually permissible to
place the source code for two or more Java classes back to
back in the same physical .java file. We don’t generally do so,
however, as it’s much easier to manage Java source code when
there is a one-to-one correspondence between the external
file name and the internal Java class name. If we were to com-
bine multiple class definitions back-to-back in a single .java
file, however, they would each produce their own .class file
when compiled.

Importing Packages
To appreciate import statements (see Figure 4), we first

must understand the notion of Java packages.
Because the Java language is so extensive, its various built-

in classes are organized into logical groupings called packages.
For example, we have:
• java.sql: Contains classes related to communicating with

Object Database Connectivity–compliant relational data-
bases

• java.io: Contains classes related to file input/output
• java.util: Contains a number of utility classes, such as the

Java collection classes that we’ll be learning about
• java.awt: Contains classes related to GUI development

Most built-in Java package names start with java, but there
are some that start with other prefixes, such as javax. If we
acquire Java classes from a third party, they typically come in
a package that starts with com.companyname, for example,
com.xyzcorp.stuff.

The package named java.lang contains the absolute core of
the Java language, and the classes contained within that pack-
age are always available to us whenever we write Java pro-
grams, so we needn’t worry about importing java.lang.
However, if we wish to instantiate a Vector (one of Java’s built-
in collection classes) as an attribute inside one of our classes,

for example, then we must import the java.util package,
as the following example illustrates:

// Simple.java

// Our class needs to instantiate a

Vector, and so we must import the package

// that defines what a Vector is.

import java.util.*;

public class Simple {

public static void

main(String[] args) {

Vector v = new

Vector();

}

}

The asterisk (*) at the end of the import statement above is
a wild card character; it informs the Java compiler that we
wish to import all of the classes contained within the java.util
package. As an alternative, we can import individual classes
from a package:

// ImportExample.java

// We can import individual classes, to better docu-

ment where each class

// that we are using originates.

import java.util.Enumeration;

import java.util.Vector;

import java.util.Date;

import java.io.PrintWriter;

// etc.

Of course this requires more typing, but it serves as better
documentation of where each class that we’re using in our
program originates.

If we were to attempt to reference the Vector class in one of
our classes without this import statement, we’d get the follow-
ing compilation error when compiling that particular class:

Class Vector not found.

This is because Vector is not in the name space of our class;
that is, it’s not one of the names the Java compiler recognizes
in the context of that class. Generally speaking, the name
space for a given class contains the following categories of
names, among others:
• The class
• All the attributes of the class

e needn’t
worry about
importing
java.lang”

FIGURE 3 Creation of multiple class files from multiple Java files

FIGURE 2 The main() method in one class of a Java programJ2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

Java COM

104 AUGUST 2001

T
“

• All the methods of the class
• Any local variables declared within a method of a class
• All classes belonging to the package that the class in ques-

tion belongs to
• All public classes in any other package that have been

imported
• All public features (attributes, methods) of any of the class-

es whose names are in the name space
• All public classes in java.lang

We could work around the failure to import a package by
fully qualifying the names of any classes, methods, or other,
that we use from such a package; that is, we can prefix the
name of the class, method, or other, with the name of the
package from which it originates, as shown in the next exam-
ple:

// Simple2.java

// no import statement

public class Simple {

public static void main(String[] args) {

java.util.Vector v = new java.util.Vector();

}

}

This, of course, requires a lot more typing, and impairs the
readability of the code.

Although most built-in Java packages have names that con-
sist of two terms separated by periods (for example, java.awt)
some built-in Java packages have three, for example,
java.awt.event. As far as packages developed by third-party
organizations are concerned, there’s really no limit to the number
of terms that can be concatenated to form a package name. The
important point to note about all of this is that the statement:

import nameA.nameB.*;

will only import classes in the nameA.nameB package; it won’t
import classes in the nameA.nameB.someothername pack-
age. That is, the wild card pertains to class names only.

It’s also important to note that importing a package is only
effective for the particular .java file in which the import state-

ment resides. If you have three different
classes of your own that all need to

manipulate Vectors, then all
three of their .java files must

include an import statement
for java.util.

Java also provides
programmers with the ability

to logically group their own class-
es into packages. If we wanted to, we

could invent a package, such as
com.objectstart.srs to house our SRS
application. Then, anyone else wishing
to incorporate our SRS classes within an
application that they were going to write
could include the statement:

import com.objectstart.srs;

in their code, and even though our compiled class files are
kept physically separated from their application’s compiled
class files, our classes would become logically combined with
theirs, assuming a few other environmental details had been
taken care of.

Going into a detailed discussion of how to create our own
packages is beyond the scope of this article. But, as it turns
out, if you do nothing in particular to take advantage of pro-
grammer-defined packages, then as long as all of the com-
piled .class files for your code reside in the same directory on
your computer system, they’re automatically considered to
be in the same package, known as the default package. All
the code that we write for the SRS application will be housed
in the same directory, and hence will fall within the same
default package. This is what enables us to write code such
as:

public class SRS {

public static void main(String[] args) {

Student s = new Student();

Professor p = new Professor();

// etc.

}

}

without using import statements, because Student, and
Professor, and SRS, and all of the other classes compris-
ing our SRS applications are within the same default
package.

The bottom line is that import statements as a building
block of a .java source code file are optional; they’re needed
only if we’re using classes that are neither found in package
java.lang nor in our own (default) package.

ABOUT THE AUTHOR
Jacquie Barker is a professional software engineer and adjunct faculty member at George
Washington University and Johns Hopkins University and a principal member of the
technical staff at SRA International, Inc. in Fairfax, Virginia. She holds a BS in computer
engineering from Case Western Reserve University and an MS in computer science, from
UCLA.

FIGURE 4 Modified Java file

he wild card pertains
to class names only”

jjbarker@objectstart.com

J2
SE

H
om

e
J2

E
E

J2
M

E

advertise

authors

subscribe

editorial

source code

jdj edge

 new york, ny

 sept 23–26

java forums

mailing list

advertiseadvertiseadvertise subscribesubscribesubscribehomehomehome contactcontactcontact

The World's Leading Java Resource

search jdj

JDJ SPEcials

bestsellers

Java COM

108 AUGUST 2001

Java COM

J2
SE

H
om

e
J2

E
E

J2
M

E

JDJ Online
Check in every day for up-to-the-minute news, events,

and developments in the Java industry. Can’t get to the news-
stand on time? Just visit www.javadevelopersjournal.com and
be the first to know what’s happening in the industry. Check
out what you’ve been missing.

Subscribe to Our FREE Weekly Newsletters
Now you can have the latest industry news delivered to

you every week. SYS-CON newsletters are the easiest way to
keep ahead of the pack. Register for your FREE newsletter
today! There’s one for Java, XML, Web Services, Wireless, and
ColdFusion. Choose one or choose them all!

JavaOne 2001 Radio Interviews
Tune in to SYS-CON Radio (via the Shoutcast Network)

and hear the industry’s top movers and shakers, interviewed
by JDJ editors. Listen to James Gosling, the father of Java, JDJ
Advisory Panel members, CEOs, product managers, and
other top executives as they share their insight and opinions
on today’s hottest issues.

JDJEdge Conference Program Now Available; Opening Day
Keynotes to be Delivered by James Gosling and Alan Baratz

Join us at the Hilton New York, September 23 – 26, in New
York City for the largest Java and Web Services event on the
East Coast.

James Gosling and Alan Baratz will deliver the opening
day keynotes; top executives from Sun, IBM, BEA,
Macromedia, PointBase, Sitraka, and Zaplet are also sched-
uled to speak.

The conference offers cutting-edge tracks, night school,
and an accelerated weekend program. More information
about the conference program and registration is available at
www.sys-con.com/javaedge/.

Product Review
Considering a product upgrade? Want to know the ins and

outs of a new product before you purchase it? Then make sure
you read our in-depth product reviews.

Our writers test and evaluate a host of Java products to aid
your decision-making process. We get behind the hype and
give you the facts. All reviews are written by experts and lead-
ers in the information technology industry.

JavaDevelopersJournal.com Developer Forums
Join our new Java mailing list community. You and other

IT professionals, industry gurus, and Java Developer’s
Journal writers can engage in Java discussions, ask technical
questions, talk to vendors, find Java jobs, and more. Voice
your opinions and assessments on topical issues – or hear
what others have to say. Monitor the pulse of the Java indus-
try!

What’s Online... August 2001

Java COM

110 AUGUST 2001

RadView Launches WebLOAD 5.0
(Burlington, MA) – RadView
Software Ltd. recently
announced WebLOAD 5.0. The
latest version offers up to a 60%
performance enhancement over
previous versions and enables
software developers and QA pro-
fessionals to more easily and effi-
ciently verify the scalability of e-
business apps
throughout the
development
life cycle. www.radview.com

realMethods Releases
Framework 1.0
(Bridgewater, MA) - realMethods,
Inc. has announced the release of
the Framework 1.0, a robust sys-
tem designed for speeding devel-
opment of the most difficult J2EE
apps. The realMethods
Framework is based on the most
widely recog-
nized J2EE
Design
Patterns and Sun Microsystems’
J2EE Blueprints. A downloadable
version is available at www.real-
methods.com.

Performance Benchmarks
Demonstrate New Release of
FioranoMQ
(Los Gatos, CA) – Fiorano
Software, Inc. announced bench-
mark results that demonstrate
that the latest version of
FioranoMQ is more than 100%
faster than the previous version
released in February 2001.

The performance benchmarks
consist of 72 individual tests in
varying real-world scenarios. A sig-
nificant optimization of the mes-
sage headers as well as improve-
ments to the unique file-based data
store were the main reasons behind
the performance improvement.

The performance tests used for
the benchmarks are
publicly available
from the Fiorano
Web site at www.fiorano.com.

Devicetop.com Announces
Developer Contest
(Ontario, Canada) –
Devicetop.com has recently
announced its third developer
contest for smart device applica-
tions. In phase 1, contestants
submit proposals for applications

for interactive digital TVs,
Internet appliances, and auto-
motive infotainment systems.
Six winners of the first phase will
receive $2500. These six ideas
will be used for phase 2 of the
competition, which will be to
build one of the applications. For
more information on the
Devicetop
competi-
tion, see
www.devicetop.com.

Applied Reasoning Introduces
Mobile Classic Blend
(Overland Park, KS) – Applied
Reasoning has announced
Mobile Classic Blend, a Java mid-
dleware product that delivers fast
Internet wireless applications on
Java-enabled mobile devices. The
current release supports the Palm
OS platform on the Kyocera
Smartphone and uses IBM’s J9
virtual machine on the
Smartphone.
www.appliedreason-
ing.com

Eoscene Announces World’s
First J2EE Based OLAP App
(Seattle, WA) – Eoscene
Corporation
has announced
the rollout of
the world’s first J2EE compliant
On-Line Analytical Processing
(OLAP) application, as part of its
Intelligence Portal product.

Eoscene’s new technology
gathers and interprets data from
any structured data source based
on its Meta models, combines
several data sources, and saves
the data in its OLAP store that
runs on most RDBMSs including
Oracle, Informix, SQL Server,
DB2, Sybase, and PostgreSQL.
www.eoscene.com

FastObjects Partners With
Wind River
(San Mateo, CA) – FastObjects by
Poet has joined the WindLink
Partner Program of Wind River
Systems, Inc.
Through the
WindLink
Partner Program, FastObjects is
making its embedded object
database technology available to
customers building systems
based on Wind River’s VxWorks

real-time operating system
(RTOS).
www.windriver.com
www.fastobjects.com

CA Delivers Unicenter 3.0
(Islandia, N.Y.) –
Computer Associates
International, Inc. has
announced the general
availability of Unicenter 3.0
Network and Systems Management
(NSM), the cornerstone of its new
Unicenter family of solutions. New

features include enhanced dynamic
2D and 3D visualization, personal-
ization and root-cause analysis:
technologies. http://ca.com

Aligo Offers Free
Web Seminars
(San Francisco, CA) -
Aligo, a leading wireless software
infrastructure company is offer-
ing live Web seminars on the
business benefits of mobile apps
and Java. Classes are under one
hour. www.aligo.com

SYS-CON Media Named Winner of the 2001
New Jersey Technology Fast 50 Awards

J2
SE

H
om

e
J2

E
E

J2
M

E

(Montvale, NJ) – SYS-CON Media (www.sys-con.com), the world’s
leading i-technology publisher and the producer of i-technology
developer conferences, headquartered in Montvale, NJ, has been
named by Deloitte & Touche to its annual list of the 50 fastest-grow-
ing technology companies in New Jersey. As a winner of the
Technology Fast 50 Award, SYS-CON was also nominated for the
national competition for the 500 fastest-growing technology compa-
nies in the United States, the Technology Fast 500 Awards, with
results to be announced later this year.

In 1999, SYS-CON Media was ranked 194 by Inc. 500 on the list of
America’s fastest-growing privately owned companies. SYS-CON
was nominated again for Inc. 500 in 2001 and is awaiting the results.
The 2001 ranking of Technology Fast 50 is based on percentage of
corporate revenue growth over the five-year period between 1996
and 2000. Winners include both public and private corporations.

“We are delighted to be a 2001 New Jersey Technology Fast 50
winner,” said Fuat Kircaali, founder and CEO of SYS-CON Media.
“Although we have experienced consistent growth since 1994, the
year the company was founded, only after SYS-CON turned five
years old were we eligible for these nominations. This year, based on
our 2000 operating results, we are confident that our company will
be named as one of America’s fastest-growing companies once
again by Inc. 500, as well as by Deloitte & Touche Technology Fast
500.” In 2000, Fuat Kircaali was nominated by Ernst & Young for
their Entrepreneur of the Year award.

Technology Fast 50 winners will be honored at an annual
awards breakfast on August 16, 2001. Winners of last year’s New
Jersey Technology Fast 50 included IDT Corp., Programmer’s
Paradise, Novasoft, Neil Laboratories, Computer Horizons, and
Hexaware Technologies.

SYS-CON received the Technology Fast 50 award based on a
1,075% five-year revenue growth between 1996 and 2000. SYS-
CON’s prior national recognition, the 1999 Inc. 500 award was given
based on a 1,307% five-year revenue growth between 1994 and 1998.

The company’s first national recognition, published in Inc. mag-
azine’s October 1999 special Inc. 500 issue and reaching over 2.5 mil-
lion readers, was an exclusive report on the companies and CEOs
who are changing the face of American business. Noteworthy alum-
ni include household corporate names such as: Microsoft, Oracle,
WordPerfect, CompUSA, Gateway
2000, Intuit, e*Trade, Timberland,
Jenny Craig, and Domino’s Pizza.

111AUGUST 2001

Java COM

*Offer expires Dec. 31, 2001

*

If you’ve been placed in a permanent
position, why should the client pay your
agency a percentage of your annual
salary for just sending out your résumé
and setting up an interview? Or if you’re
a contractor, sure, the agency sends you
a timesheet and mails you your pay-
check, but how much does that cost?
And how much is the client company
you’re working for paying them?

At some point these questions are
bound to run through the mind of any
intelligent engineer. No one wants to
feel like they’re being taken advantage
of, or share their income with a compa-
ny that’s a necessary evil.

There are good agencies out there.
They provide valuable services to engi-
neers, not the least of which is finding
you that opportunity in the first place.

But with the past few years’ boom in
demand for technologists, innumerable
agencies have sprung up, eager to cash
in on the high-tech bandwagon without
much regard for little details, such as
industry experience, technical expertise,
or solid business ethics.

What should you look for in an
agency? What should you expect from
them? And what should they expect
from you? Our combined experience on
both sides of the technologist/agency
relationship has given us more than a
few insights that we’d like to share.

The Technologist/Agency Relationship
“Traditionally speaking, many agen-

cies represent a broad spectrum of tech-
nical professionals. The trend is chang-
ing, however,” says Kiran Khanna, a sen-
ior recruiter at ObjectFocus. “There is a
strong demand for the services of spe-
cialized, niche agencies that can provide
the needed talent in specific technology
segments quickly and efficiently.”

Many potential candidates balk at
providing references to an agency,
claiming, “I work with lots of agencies, I
can’t have all of them bothering my ref-

erences.” This leads us to a very impor-
tant distinction between reputable and
“fly-by-night” agencies.

When you get a phone call from a
fast-talking recruiter who can’t wait to
zap your résumé off to a client for “a
great opportunity,” how carefully does
that recruiter explain the position?
Unfortunately, the majority of agency
recruiters know little, if anything, about
the kind of work you do.

Their primary goal is to spam out as
many résumés as possible (often unso-
licited) to clients who may be looking for
someone with skills that are totally dif-
ferent from your own.

And your résumé arrives on the desk
of an annoyed, frustrated hiring manag-
er with that agency’s letterhead embla-
zoned across the top. What many engi-
neers don’t realize is the following:

• You’re guilty by assocation.
These agencies that are mostly inter-

ested in closing a quick deal won’t both-
er to fully qualify you before submitting
you for a position. You can bet that
they’re also submitting totally unquali-
fied candidates to their clients.

The agency has no credibility with
the client and therefore you have no
credibility with the client. You have only
partnered with that quick-sale agency to
waste the hiring manager’s valuable
time. And burn a potential bridge.

• A good agency has strong working
relationships with its clients.

When approached by an agency, ask
the recruiter about the relationship with
the client. How long have they been pro-
viding candidates to that client? How
many of their consultants are currently
working with that client? What is the hir-
ing manager like? What is the style and
culture of the company?

If the recruiter can’t answer at least
some of these questions, there’s a good
chance they have no relationship with

that client at all. Because they lack cred-
ibility, many quick-sale agencies are
merely trying to fill positions they pulled
off a company’s Web site.

• Show me the money!
So you’ve found yourself a good,

solid agency to work with that cares
about building a long-term relationship
with you. You’ve found your Jerry
Maguire. What does that agency do to
earn its percentage?

Building and maintaining strong
relationships with new and existing
clients requires constant effort, from
cold-calling to seven-day-a-week net-
working. The end result is the job you’re
working on today and in the future.

Each client has its own contract to be
negotiated, which means detailed, time-
consuming legal work before you begin
your new position. If you’re on a con-
tract, there’s constant monitoring of
your project, progress, and on-site rela-
tionships enabling the agency to solve
problems before they occur.

By constantly searching for and qual-
ifying new engineers, agencies burn up
the phone lines and ever-changing
Internet resources.

A good agency should provide full
disclosure of their fees and margins,
regardless of whether it’s a contract or
permanent placement. Not all agencies
do this, but at the very least, they should
be willing to tell you the placement fees
or the percentage markup they’re
charging.

As in any business, there’s no greater
source of credibility than a referral.
Once an agency has said they’d like to
work with you, ask to speak to one of the
engineers who currently works with
them. You’re likely to get valuable
insight.

Who Needs an Agency?

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

You’re a skilled technical professional with experience that’s in demand. Your
résumé reads like a Who’s Who of top companies and a What’s What of top skills. So
how come you’re the one working 40 hours a week, but a chunk of the money the client
is paying for your services is going or has gone to the agency that placed you?

Career Opportunities

Do they provide valuable services?

AUTHOR BIOS
Bill Baloglu is a principal

at ObjectFocus
(www. ObjectFocus.com),

a Java staffing firm in
Silicon Valley. He was a

software engineer for 16
years prior to his position

at ObjectFocus. Bill has
extensive 00 experience,

and has held software
development and senior
technical management

positions at several Silicon
Valley firms.

Billy Palmieri is a
seasoned staffing industry
executive and a principal

of ObjectFocus. Before
that he was at

Renaissance Worldwide, a
multimillion-dollar global
IT consulting firm where

he held several senior
management positions in

the firm’s Silicon Valley
operations.

billb@objectfocus.com

billp@objectfocus.com

J2
SE

H
om

e
J2

E
E

J2
M

E

Java COM

112 AUGUST 2001

At one point I was introduced as
JDJ’s “resident iconoclast.” Naturally, I
smiled a big smile, puffed out my chest,
and tried my best to look genuinely
proud of myself. Then, at the first
opportunity, I made some excuse to
steal away and look up the word “icon-
oclast.”

Well, as it turns out, my feigned
pride was a good guess. It seems that
the term iconoclast historically origi-
nated with wild-eyed 8th-century
Byzantine Christians destroying reli-
gious images and idols – and later came
to mean anyone who attacks cherished
beliefs and traditions. Today, it has
finally come to mean something like,
“incredibly nice fellow with closely-
trimmed eyebrows.”

Actually, I guess the middle defini-
tion of “iconoclast” – the one that talks
about attacking cherished belief sys-
tems – is the one I would most hope to
embody for JDJ. (After all, I made up
the one about the eyebrows.) Basically,
if I were to set out to try to describe
myself, I know the phrase “cynically
skeptical” would figure prominently (as
would the phrases “dashingly hand-
some” and “conditionally conscious”).

Personally, I’m simply unwilling to
take much of anything on faith, or
because so-and-so says so. A couple of
my heroes are James Randi and the late
Richard Feynman, so you could say I’m
not exactly in the mainstream of mod-
ern belief systems. So be it. With any
luck, I’ll do my eyebrows proud.

So, along those lines, I needed to

come up with some cherished belief
system to attack for this month’s col-
umn. I couldn’t just go after the low-
hanging fruit though, like tarot readers
or the Psychic Eyebrow Network or
somesuch. And whatever I did come up
with should be at least tangentially
computer-related to fit into the context
of this fine publication.

Well, a couple of weeks ago I just
happened to be viewing the big screen
– I had my remote control deftly
clutched in the Random Button Access
with Embedded Tobacco Harness posi-
tion, and was flipping joyously amidst
the tripe – when I suddenly experi-
enced a catalytic inspiration for the
choice of this month’s “target” belief.

The image is of a young fellow,
standing in a courtyard, positively rav-
ing about how he’s listening to the radio
outside...without any wires attached.

Naturally, I was a little confused. I
mean, radios are wireless by definition,
right? Didn’t Guglielmo Marconi send
wireless radio signals across the
Atlantic Ocean almost a century ago?
Didn’t I snap my fingers to a wireless
transmission of “The Immigrant Song”
in my $100 1962 Studebaker Lark? I
mean, what’s the big deal?

Then the commentator went on to
explain that this is Internet radio he’s
listening to on his little handheld
device. It’s streaming audio arriving
over a 24Kbit/sec wireless Net connec-
tion (barely phone quality). I guess what
struck me as funny was the amazement
in the commentator’s voice.

“Wow! I’m actually standing out of
doors listening to this streaming
Internet radio! Who could’ve imag-
ined?” Of course, the whole kit and
portable kaboodle – hardware and soft-
ware – would set you back almost
$1,000. (Hopefully, it might also do
other useful things, like provide driving
directions to that poorhouse in your
future; he didn’t say.)

Oh, I know this Net radio device is
really just a “proof of concept” for the
whole “wireless connectivity” belief
system. One of the most prominent
features at JavaOne was the ubiquity of
connectivity, both on the show floor
and among the attendees. Everywhere
you looked, people had tiny phones
that could start their cars, feed their
pets, and ignore their e-mail.

I can’t deny that this connectivity
has its upside. But do I really want to
need a cell phone? I’m not so sure.

Currently you’re effectively ante-
diluvian if you don’t have one of these
devices, the tinier the better, hanging
from your belt or your ear or your
spaghetti strap. I’m going to theorize
that it won’t be long before the lucky
ones are those who don’t have to be
connected. Frankly, most of the time I
don’t want to be 10 dialed DTMF digits
away from anyone in the world. In fact,
there are times when I’d simply like to
say, “Gone fishin.”

How’s that for radically iconoclas-
tic?

blair@blairwyman.com

C U B I S T T H R E A D S

AUTHOR BIO
Blair Wyman is a software
engineer working for IBM
in Rochester, Minnesota,
home of the IBM iSeries.

WRITTEN BY
BLAIR WYMAN

Java COM

114 AUGUST 2001

J2
SE

H
om

e
J2

E
E

J2
M

E
Jav

a D
ude

s

The powers that be let me out of my cube long enough to attend the JavaOne Conference a couple of
months ago in San Francisco.While I was there, I got the chance to meet some of the movers and shakers behind
Java Developer’s Journal. Of course, I had already met a couple of the “big cheeses,” but by no means all of them.

Radically Iconoclastic

